
AD-A26 2 696 S ELECTF %

S APR 7MI

C U

The Second Garnet Compendium:
Collected Papers 1990-1992

edited by
Brad A. Myers

February 1993
CMU-CS-93-108

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A~ppovec ic pivs, riej*s

Abstract

This technical report brings together nine papers about various aspects of the Garnet project. It is a sequel

to Computer Science Technical Report CMU-CS-90-154 which contained articles about Garnet from
1989-1990.

Copyright) 1993 Carnegie Mellon University

This research was sponsored by the Avionics Laboratory. Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597. Additional support for Garnet has been provided by NEC Corporation,
Apple Computer, Inc., Adobe Systems, Inc., and the General Electric Company.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NEC, Apple, Adobe, GE, or the U.S. government.

S93-07193

983 4. (6 0:I. , , ,

Keywords: Garnet, user interface development environments, user interface management systems,
toolkits, constraints, interface builders, object-oriented programming, direct manipulation

Forward

Forward

The Garnet User Interface Development Environment contains a comprehensive set of tools that make
it significantly easier to design and implement highiy-interactive, graphical, direct manipulation user
interfaces. The lower layers of Garnet provide an object-oriented, constraint-based graphical toolkit t1t
allows proerties of graphical objects to be specified in a simple, declarative manner and then maintained
automatically by the system. The higher layers of Garnet include a number of interactive tools that allow
much of the user interface to be created by demonstration without programming.

This technical report collects together a number of recent papers about Garnet, some of which have
been or will be published elsewhere. Also included are a collection of pictures of applications created
using Garnet. A previous technical report (CMU-CS-90-154) contained the papers from 1989 through
1990, inclumng an introductory article describing all of Garnet which appeared in IEEE Computer in
November, 1990. If you are not familiar with Garnet. it is best to read that article first. There is also a
complete reference manual for Garnet that is revised about every six months. The current version of the
manual is CMU-CS-90-117-R3.

The first four papers discuss the toolkit level of Garnet. The underlying object system is the topic of
the first paper, page 1. Next, is a paper describing the constraint system (page 17). These and other
features contribute to a unique programming style in Garnet, as described on pagc 27. The next paper
summarizes some reasons that Garnet is good for creating interactive design tools (page 45). The last five
articles discuss the higher-level tools in Garnet. First, a chapter from an upcoming book summarizes all
the "demonstrational" aspects of Garnet (page 69). The two papers on the Gilt interface builder describe
its technique for increasing application and user interface separation (page 89) and achieving consistent
look-and-feel across applications (page 99). The C32 spreadsheet system (page 107) helps implement
constraints when the simple icons in Lapidary are insufficient. The new Marquise tool allows the overall
behavior of the interface to be defined (page 115). Finally, a collection of pictures of systems created
using Garnet starts on page 123.

As mentioned in the articles, Garnet is available for anonymous FTP. To retrieve the system, ftp to
a.gp.cs.cmu.edu (128.2.242.7). When asked to log in, use anonymous, and your name as the
password. Then change to the garnet directory (note the double garnet's) and get the README
explanation file:

ftp> cd /usr/gare%'ý3ar-e:i
ft.P> get READXE TC p -

Now, follow the directions in the README file.

Aj(Ocesiof FrC
TI CRA&I

D ttC TAZ 5j

4 l 't

D!'J- it) T:or~lI

I A:til .4 1(1i U
S.O ~ i l tft

iv -
Second Garnet Compendium

Second Ganet Compendium . V . Table of Contens

Table of Contents

Forw ard iii

Efficient Implementation of an Integrated Prototype-Instance
and Object System I

The Importance of Indirect References in Constraint Models 17

Declarative Programming in a Prototype-Instance System:
Object-Oriented Programming Without Writing Methods 27

Environment for Rapid Creation of Interactive Design Tools 45

Garnet: Use of Demonstration .. 69

Separating Application Code from Toolkits:
Eliminating the Spaghetti of Call-Backs 89

Graphical Styles For Building User Interfaces by Demonstration 99

Graphical Techniques in a Spreadsheet for
Specifying User Interfaces .. 107

Marquise: Creating Complete User Interfaces by Demonstration ... 115

Screen Shots from Selected Garnet Applications 123

Efficient Implementation of an Integrated
Prototype-Instance Object and Constraint System

Dario A. Gluse Brad A. Myers Brad Vander Zanden

School of Computer Science School of Computer Science 107 Ayres Hall
Carnegie Mellon University Carnegie Mellon University Computer Science Depamnent

5000 Forbes Avenue 5000 Forbes Avenue University of Tennessee
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Knoxville, TN 37996-1301

dzg@cs.cmu.edu bam@cs.cmu.edu bvz@cs.utk.edu

Abstract

KR is a portable object-oriented system with an integrated constraint maintenance mechanism. The
object system implements the prototype-instance model and supports dynamic redefinition of prototvyes.
Constraints express relationships among values, and are specified using arbitrary Lisp expressions. Tht
constraint system transparently keeps constraints up to date. For maximum performance, it is closely
integrated with the object system. Several mechanisms, such as constraint value caching and copy-down
inheritance, are used to improve performance. The close integration of object-oriented programming with
flexible constrain' -aintenance makes the system well suited for a variety of application programs,
including highly interactive graphical applications. KR is the basic building block of the Garnet user
interface development toolkit.

Efficient Objects and Constraints -2

1. Introduction
KR [Giuse 90] is a portable object-oriented system with an integrated constraint maintenance

mechanism, written in Common Lisp. KR implements the prototype-instance model [Lieberman 861, and
supports completely dynamic redefinition of prototypes with automatic change proagation.

The system began as an attempt to implement the best ideas found in frame systems without incurring
their typical performance penalty [Giuse 89]. Constraint maintenance was first implemented as a separate
layer on top of the existing language. After that experiment proved successful, we integrated constraints
with the basic language to provide efficient performance. The three components (object representation.
object-oriented programming, and constraint maintenance) are now closely integrated and present a
smooth interface to the application programmer.

KR provides the object-oriented model and constraint maintenance system for Garnet (Myers 901, a
comprehensive user interface development environment for X/1 1. In addition to being used to implement
Garnet itself, KR is the implementation language for all Garnet applications. Such applications range
from simulations of computer security constraints [Tygar 87] to graphical editors such as Lapidary
[Myers 89], to visual programming applications. Other applications include speech-understanding

research at Carnegie Mellon University [Young 891 and an intelligent language tutoring system for
Chinese [Giuse 88].

Performance has remained a central goal throughout the evolution of the system. We have striven to
achieve excellent performance for common operations, while supporting advanced features usually
associated with experimental systems. KR does not attempt to implement every possible operation.
Object-oriented programming, in particular, is simpler than in CLOS [DeMichiel 891, and is carefully
tailored for typical Garnet applications.

KR is the only widely-used system that implements the prototype-instance model of inheritance. This
model provides maximum flexibility, because any object can be used as a prototype for other objects.
The notion of class, in particular, is absent. For emphasis, we will use the terms 'prototype' and
'instance' in the remainder of this paper. It should be remembered, however, that in KR there is no
conceptual difference between those two terms. The same object can function as both a prototype and an
instance.

Changes to an object used as i prototype are always reflected in instances, including existing ones.
Consider, for example, a prototype for rectangles. The prototype typically supplies default values for
such parameters as border thickness and filling color. Rectangles created as instances of the prototype
will then inherit those parameters, unless the programmer explicitly overrides them. The prototype-
instance model allows the values in the prototype to be modified at any time. All rectangle instances are
then automatically modified to reflect the changes. It is even possible to change dynamically the
prototype used for an instance. For example, an object with a rectangle prototype could be modified to
become an instance of a circle instead. All necessary changes happen automatically.

The complete integration of KR objects and constraints allows the application programmer to use
constraints for operations that would typically be implemented as (combinations of) methods in
traditional object-oriented systems. This results in a highly declarative, rather than procedural.
programming style [Myers 921.

3- Second Garnet Compendium

2. Related Work
KR integrates ideas from several areas, including object-oriented systems, frame systems, and

constraint systems. The resulting combination provides a unique mix of object-oriented programming
and a declarative style of programming with constraints.

Historically, the first influence on KR came from frame systems. Systems such as KL-ONE [Brachman
771 and, especially, SRL [Fox et al. 84, Wright and Fox 83] were the primary influences. Unlike those
systems, however, KR limits the number of features in order to achieve excellent performance. The
system, in fact, began as an attempt to implement the best ideas from frame systems without incurring the
performance penalty usually associated with them [Giuse 89, Giuse 90]. In order to achieve good
performance, KR omits user-controlled inheritance paths, path grammars, slot specifiers, and multiple
contexts. However, t retains several of the dynamic features associated with frame systems, such as
user-defined inheritance slots, multiple inheritance, and the ability to add any slot to any object. Unlike
SRL, KR allows the user to set slots even without a prior declaration: setting a slot's value creates the
slot, if none previously existed.

The object-oriented component was also partially influenced by SRL. Like that system, KR does not
distinguish between methods and ordinary values: any slot can contain a value or a method. As in SRL
and Flavors [Weinreb and Moon 811, methods are invoked by sending a message. KR does not support
generic functions, as found in both C++ [Stroustrup 86] and CLOS [Bobrow et al. 89]. The primary
reason for this choice is that much of the functionality usually associated with generic functions is
implemented as constraints in KR.

The constraint maintenance component was initially modeled after Coral [Szekely and Myers 881, an
experimental constraint system written in CLOS. Coral, however, provided only a small portion of the
indirect reference constraints functionality found in KR. Whereas in KR a constraint can reference
arbitrary objects either directly or indirectly (by referring to slots that contain pointers to objects), Coral
only allowed the user to provide fixed lists of object names. The KR approach is much more flexible,
because it supports dynamic redefinition of the path leading to a desired value through any number of
objects, and dynamic changes to objects.

Because much of what programmers do is exploratory programming, KR does not force any cotipile.
time typing, but rather relies on Lisp's runtime type checking. This approach is similar to that used in
other object-oriented systems such as Smalltalk-80 [Tesler 81, Goldberg and Robson 831 and SELF
[Ungar and Smith 91], but unlike the C++ compile-time typing system.

Several object-oriented systems advocate restricting access to object slots via a method-based interface.
This approach, already found in Flavors, is best exemplified by SELF, in which message passing is
considered the fundamental operation and objects access state solely by passing messages. KR takes the
opposite approach. Given the combination of object-oriented programming and constraint maintenance.
most KR programs use constraints as the primary abstraction, and therefore access state directly via slots.

3. The Object Model
KR supports both named and unnamed objects. Objects in KR arc collections of attribute/value pairs.

Each attribute, known as a slot, has a name, which is unique within an object. KR objects arc typic:a)lv
created using the macro CREATE-INSTANCE, which allows the user to specify a prototype for the object as
well as a series of slots/values. it is possible to specify NIL as the prototype, in which case the new object
does not have any prototype (at least initially). The following call creates a new object named RECT-I
with two slots, :LEFT and HEIGHT, and no prototype:

(create-instance 'RECT-l nil (:Left 20) (:height 25))

Efficient Obiects and Constraints -4

A slot contains a single value, but the value can be of any Lisp type (such as a list or an array). Lisp
functions can be stored in ordinary slots, and can then be invoked as methods. The system does not
re, quire methods to be defined or installed specially, although the macro DEFINE-MFTHO) is provided for
convenience. A special type of value, known as aformula, is used to implement constraints, as explained
below. A formula specifies how to compute a value based on other values. When a depended value
changes, the formula is (logically) reevaluated.

Slot names in KR begin with a colon. Any slot can be dynamically added to or removed from an
object, whether or not the slot is defined in any prototype. Setting an object's slot with a value
automatically creates the slot, if needed. This makes it extremely easy to associate any piece of
information with any object, since slot names do not have to be predefined. For example, one can set the
value of slot :PERIMETER in object RECT-l by typing:

(s-value RECT-1 :perimeter 125.5)
The macro S-VALUE is used to set the value of a slot of an object, creating the slot if needed and replacing
any value that was there previously. The same function is also used to install a constraint on a slot.

Internally, slots can be of two types. The first type, known as a system-defined slot, is used for slots
that are common to most objects. Examples include the :1S-A slot, which points to the prototype of an
object, and the :LEFT slot, which-indicates the leftmost edge of a graphical object. System-defined slots
provide highly optimized access. KR macros such as G-VALUE (which retrieves the value of a slot) and
S-VALUE expand into simple array references for system-defined slots. System-defined slots also use less
storage that ordinary slots, because their position is known at compile time. System-defined slots are
hard-wired into KR, and the application programmer cannot define new ones at run time. Adding system-
defined slots at the KR level, however, is extremely simple (although a recompilation is necessary),
making it easy to accommodate the evolving needs of the Garnet system.

The second type of slot are user-defined slots. Any object can have as many user-defined slots as
needed. Such slots are slightly less efficient than system-defined ones, both in terms of performance and
of storage. Note that the distinction between system-defined and user-defined slots is invisible to the
user. Note also that there is no distinction in KR between class variables and instance variables; KR slots
can be used either way, and their status can be changed dynamically.

The slots of an object are stored in a variable-length array. In addition to a value, each slot also
cnntains information which is used internally by KR, as shown in Figure 1. KR objects are represented as
Lisp structures with two structure slots. The first entry is the name of the object. or NIL for unnamed
o-biects. The second entry contains the variable-length array of slot descriptors.

Each system-defined slot is represented by three entries in the array. User-defined slots take four
entries, because the slot name needs to be stored as well. The first piece of information in a slot is the
slot's current value (25 in the example). A special marker indicates slots that have no value.

The second piece of information associated with each slot is a collection of bits, encoded as an integer,
which determine the characteristics of the slot. Currently, three bits are used. The first bit. inherited-bit.
indicates whether the value in the slot was inherited from a prototype. The second bit, is-parent-bit,
indicates whether any instance of the object has inherited the value from this slot. The third bit.
constant-bit, indicates whether the slot is declared constant or was inferred constant (see below).

The third piece of information in a slot is the list of formulas that depend on the value in the slot. In
Figure 1 this is shown as a list of three formulas (unnamed formulas are printed as "F" followed by a
unique integer). This list is used to notify all formulas that are potentially affected whenever the value of
the slot is modified. Slots that have only one dependent do not store a list, but just the formula itself.

5- Second Garnet Compendium

Name = RECT-1 :height slot.

slots --

25 value dependents (F1752 F276 F294)

inherited-bit

is-parent-bit
constant-bit

Figure 1: Internal representation of KR object RECT-1 with slot :HEIGHT

3.1 Inheritance
Inheritance in KR occurs through inheritance slots, i.e., slots that have been declared to the system

using the macro CREATE-RELATION. The only system-definea inheritance slot is :IS-A. Its automatically
maintained inverse slot. :IS-A.INV, lists all instances of an object, and is used to propagate changes
automatically. The user may also declare new inheritance slots, with or without inverse slots. User-
defined inheritance slots provide the same inheritance behavior as the :IS-A slot.

Inheritance slots (such as :IS-A) may contain one or more values. Thus, KR implements dynamic
multiple inheritance, both through multiple values in the :IS-A slot, and through multiple inheritance slots
in the same object. The :is-A hierarchy is searched first for inheritance. If no values are inherited through
the :IS-A hierarchy, and other inheritance slots are present, the other slots are then searched in turn.
Multiple inheritance is not currently used in Garnet, but some non-Garnet applications use it.

The following code creates the two objects A and B, and connects B to A via the :IS-A slot:
(create-instance 'A nil (:left 10)) ; create top object, A
(create-instance 'B A (:top 15)) ; B :is-a A

Printing objects A and B shows the following:

{A :LEFT - 10
:IS-A-INV - BI automatically created inverse slot

{B :IS-A-- A ; inheritance slot
:TOP 151

Nove that slot :IS-A-ENV is automatically set by the system. Because IS-A is an inheritance slot. asking
for the value of slot:LEFT in B would return the value 10, inheriting it from A.

Access to inherited slots is a potential performance bottleneck. KR implements a careful tradeoff
between access time and storage requirements. When an instance is first created, only slots that are
specifically defined by the user are actually created as local slots. In the example above, slot :LEFT in
object B is not created, because it is not mentioned explicitly. When the value of a slot is requested and is
not present locally, the system examines the inheritance hierarchy, looking for a prototype which supplies
a value for the slot. If one is found, the system copies the value into the instance and all intervening

Efficient Obiects and Constraints .6

prototypes (if any). The is-parent-bit is set in the slot from which the value is inherited, and in all the
intervening prototypes.

When an inherited value is copied down, it is marked as inherited via the inherited-bit of each slot into
which it is copied. A subsequent request for the slot will then find the inherited value locally, and thus
will be just as efficient as a local slot access. Inheritance, therefore, uses a lazy copy-down mechanism,
since no copy is made until a value is actually requested. This solution represents an effective tradeoff
between storage (which is only allocated when needed) and access time (which, except for the very first
time, is just as fast as local access).

Implementing inheritance via lazy copying of values from prototypes to instances requires special care
when changes are made to the hierarchy, or to one of the prototypes. In the example above, changing slot
:LEFr in object A must also change the copy of the value in slot :LEFT of object B, since the latter inherited
its value from A. Similarly, a change in the inheritance hierarchy (such as changing slot :IS-A in object B)
would also cause old inherited values to become invalid.

KR handles such situations by recursively eliminating from instances all the values that have been
inherited from their prototypes. When an inherited value is eliminated from an instance, it is replaced by
a special no-value marker which can never appear as a user-defined value. Additionally, the inherited-bit
is cleared. The slot, then, looks exactly like a newly created slot that has never been accessed. The
change is recursively propagated down the hierarchy, stopping whenever an empty slot is reached, or
whenever a slot is found for which a local value was defined. The advantage of this scheme is that if the
slot in the prototype is changed again, it is not necessary to revisit the entire subtree of instances.

It might seem that during this recursive down-propagation one could simply set slots to the new value
in the prototype, rather than to the special no-value marker. However, this is undesirable for two reasons.
First of all, if the new value is a formula, a new copy of the formula would be required for each slot which
had inherited the value, because formulas contain local information for each slot. Second, this approach
would fail in the case of multiple inheritance, because some of the instances might in fact have inherited
values from a different prototype. In the presence of multiple inheritance, the current approach ensures
that when a value is requested it will be inherited from the correct prototype.

An interesting case of inheritance is structural inheritance, which refers to composite objects (i.e.,
objects that contain other objects as their components). When an instance of a composite object is
created, the system arranges for the entire etructure to be copied. In addition to an instance of the object,
instances of each component are also created, and the structural connections among the various objects
are set appropriately. Structural inhe.itance is an extremely powerful abstraction, because it frees the user
from having to know whether an object being instanced is simple or composite. Even more importantly,
KR's prototype-instance modf.: means that any later change to the original composite object (the
prototype) will be automatically reflected in its instances. It then becomes possible to alter a prototype
dynamically and have the modifications propagate immediately to any instance.

4. Object-Oriented Programming
Object-oriented programming in KR is implemented via methods. Methods are procedural attachments

that can be associated with any object using DEFINE-METHOD, or simply by setting a slot to a function
vallie using S-VALUE. Internally, methods are stored in slots, just like any other KR value; the system
does not limit the number or types of methods that can be defined. Methods can be created or modified
dynamically, and any object can redefine any of its methods as needed. If a locally redefined method is
eliminated, the prototype-defined method is automatically reused. This fully dynamic approach to
method handling is more reminiscent of full-fledged frame systems such as SRL than of traditional
object-oriented systems.

"7- Second Garnet Compendium

A method in KR is invoked by sending a message to an object via the macro KR-SEND. In mos, cases,
methods ame not actually defined at the level of an individual object, but are inherited from its
prototype(s). Of course, the normal copying down mechanism is used for methods that are inherited from
some prototype. KR provides facilities to affect method combination, specifically a function that allows a
method to invoke a less specific method defined by some prototype of the current object. This part of the
language is not as complex as in other Lisp-based object-oriented systems such as CLOS, however,
because usually KR programs use a declarative approach based on constraints [Myers 92,1 instead of
methods.

In addition to supplying default values, methods, and constraints, KR prototypes are also used to
control the initialization of instances. Immediately after an instance is created, the system looks for an
:NITIAL•ZE method (which is typically inherited). If one is defined, the system invokes it with the new
instance as a parameter. This initialization mechanism, akin to the one provided by many class-based
object systems, allows instances to be initialized using arbitrarily complex user-defined methods.

The other component of the KR obje,! model is a demon mechanism. It is possible to associate with
each object a demon, i.e., a procedural attachment that is invoked when certain slots in the object are
modified. Using demons, KR applications can effectively implement active values. Two separate
demons are executed at different stages in the value modification cycle (currently, Garnet only uses the
first one). The first demon is the invalidate demon. It is executed when a slot is invalidated, typically
because the slot contains a formula which depends on a value that changed. The invalidate demon is
executed with the old value still in the slot, allowing the demon to record the old value, if so desired. The
second demon is the pre-set demon. It is invoked immediately before the value in a slot is actually set.
The primary difference between the two demons is the timing: the invalidate demon is called immediately
after a formula becomes invalid, but the pre-set demon is not called until the value of the formula is
demanded. If the value of a formula is never demanded, the pre-set demon may never be called, but the
invalidate demon is always called. Note that the invalidate demon is called only when a formula first
becomes invalid; slots that contain already invalid formulas are not affected.

When a slot in an object is modified, KR checks whether the slot requires a demon. This is specified
by storing the list of slot names in the system-defined slot :UPDATE-SLOTS. In most cases, the list of slot
names is actually inherited from some prototype. In Garnet, this list includes all the slots that control the
graphical appearance of objects. If the changed slot is in :UPDATE-SLOTS, KR looks for a demon for the
object. If one is found, it is called with the object and the slot as parameters.

Because demons are application-defined, they can perform any desired action. In the Garnet graphical
object system, for example, the invalidate demon is used to support the update algorithm, which ensures
that incremental changes to objects are reflected in the display. The Garnet demon records the fact that
the object was modified by adding it to a list of "dirty" objects. At the next display update cycle, all dirty
objects are redisplayed with their new graphical features.

5. The Constraint Model
A constraint allows the value in a slot (the dependent value) to be computed from the values in other

slots. In doing so, a constraint specifies that the dependent value must be recomputed when any of the
other values change. The current version of KR implements lazy constraint evaluation, which means that
recomputation does not take place until needed, i.e., until the dependent value is actually demanded. An
eager-evaluation version of constraint evaluation is currently under development.

Constraints are specified by a special type of object, called a formula, created by the macro FORMULA
(and its variant O-FORMULA, which is used for compiled constraints). Internally, formulas are represented
as Lisp structures. To illustrate the representation of formulas, consider executing the following KR

Efficient Obiects and Constraints

code:

(create-instance 'CIRCLE-2 nil
(:'Left 4)
(:top (r-formula (+ 6 (gv :SELF :left))))

(g-value CIRCLE-2 :top)

The call to CREATE-INSTANCE creates an object named CIRCLE-2, sets its :LEFT slot to 4, and sets the
:TOP slot to contain a formula which adds 6 to the contents of slot :LEFT. The call to G-VALUE requests the
value of slot :TOP, causing the formula to be evaluated, and returns the value 10. The internal structare of
the formula at this point is illustrated in Figure 2.

name -dF49 CIRCLE----efR
onscheaon-schedet

on-slot nm cce-l:topeto lteormula scrtchdvu

Instead of re-evaluating a fop ormula evrPieisvlei4rqetd 9Rccc hecmuc au nti

cachd-e alue fo l 10 (w 6 (gv bSELF :ieft))

is-a s use NIL
executa do le code a T <Complleo g Lisp code>

expression that(+ 6 (gvu:SELFd :eft))
i number validl

Cle~einds-on -- CtRCLE-2.left

Figure 2: Internal strhctu ae o c a KR formula.

Two structure slots, on-schema and on-slot, are used 0 w n th for ihe object and slot on which the
formula is installed. The structure slot named cached-value holds the formula's current cached value.
Instead of re-evaluating a formula every time its value is requesteda KR caches the computed value in thcs
structure slot. A single valid bit (shown near the bottom of the structure) indicates whether the cached

value is validn If any of the depended values change, the bit is reset, indicating that the cachd value has.
become stale and the formula will need to be re-evaluated when its value is requestedt

The is-a structure slot is used' to point to the formula's parent-, in our example, it contains "NIL because
the formula does not have any, The following two structure slots contain the executable code [-or the
formula, and the original expression that was used when the formula was creaited. The next structure slot

contains an integer which encodes the valid bit and the so-called cycle numbers KR uses this number for
two separate purposes. First, the number is set to 0 when the formula is created, indicating that the
formula was never evaluated. Secondd KR uses the number to detect constraint circulaan tiesa

Constraint circularities arise when two formulas depend on each other's value. To detect such cases, at
the beginning of each evaluation KR increments a global number. Before each formula is evaluated, KR
sets its cycle number to the global number. Before evaluating each formula. however, the system checks
whether its cycle number equals the global number, Normally, cycle numbers should be strictly lower
than the global number. If a formula is found whose cycle number equals the global number, the formula
must have already been visited during the current evaluation cycle, and hence must be a part of a

9- Second Garnet Compendium

constraint circularity. KR ther breaks the loop and returns the current cached value of the formula where
the circularity was detected. The values of the other formulas in the cycle are recomputed accordingly.

The final structure slot in a formula contains a list of dependencies, which is needed when the formula
is destroyed. This list allows the system to remove the formula from the dependents-list of all slots whose
values were requested by the formula. Without this list, stale pointers would be left around after a
formula is destroyed.

Unlike most constraint systems, in which constraints can only be specified using a restricted language
(Vander Zanden 89, Boming 79], constraints in KR can be.arbitrary Lisp expressions. It is common for

application programmers to define complex constraint expressions that use conditionals, loops, local
variables, and the full range of Lisp functionality. The only limitation is that constraint expressions
should not have side effects, because the system does not guarantee the precise order of evaluation (or
re-evaluation) of constraints.

Constraints are closely integrated with the object model. First, a constraint is placed on a slot simply
by setting the value of the slot to be a formula object. From the user's viewpoint, this is identical to
setting a slot with a regular value, except that the value is wrapped in a formula macro call. Second, a slot
that contains a constraint is accessed exactly like any other slotr constraint evaluation is transparent.
Third, change propagation is also transparent. When a slot is changed using S-VALUE, KR automatically
checks whether the slot was used in computing the value of any existing formula. All dependent formulas
are then recursively invalidated, and will be recomputed as nee'ded. Several optimizations are used to
make this process efficient. If the slot is set to the same value it had before, no invalidation needs to
happen. Also, invalidation stops as soon as an invalid formula is reached, since the algorithm guarantees
that all -formulas that depend on that formula will already have been invalidated. Note that the entire.
process is invisible to the user. all the user does is to set a value in a slot.

The advantages of allowing arbitrary Lisp expressions in constraints are clear. Programmers can
express very complicated behavior through constraints, e.g., determine the exact layout of composite
objects such as trees or variously-aligned lists of similar objects. Such complex constraints are typically
supplied by system implementors and inherited by all user-defined gadgets. For example, the Garnet
system provides composite lists of gadgets that are formatted using constraints. User-defined gadgets,
such as menus, that use these lists automatically inherit the system-defined constraints.

Conventional constraint systcms typically need to parse constraint expressions and determine what
values are being referenced. The fact that KR supports arbitrary Lisp expressions in constraints, however.
makes it impossible to precompute the list of all depended values. A constraint, for example, may invoke
user-defined functions, which might contain references to arbitrary values. KR solves this problem by
arranging for dependencies to be computed dynamically, as the constraint exDression is being evaluated.
This is done via the macro GV. Like G-VALUE, this macro retrieves the value from a slot. In addition,
however, GV also records the dependency, if needed. Consider the following formula expression. which
computes the right edge of an object by adding the object's width to the left edge of object RECT.3:

(+ (gv RECT-3 :left) (gv :SELF :width))
When this expression is evaluated, the first GV adds the current formula to the list of dependents of slot
:LEFT in object RECT-3 (the list of dependents is one of the three components of a slot, as shown in Figure
1). The second :GV adds the formula to the list of dependents uf slot :WIDTH in the current object. Once
these dependencies are set up, KR will invalidate the formula whenever one of the depended values is
modified.

As shown in the example, :SELF can be used instead of an object name to indicate the object on which
the formula is installed. In addition, GV allows more than one slot name to be specified. For example, the

Efficient Objects and Constraints -10

following formula expression can be used to fetch the value of slot :LEFT from the object contained in slot
:PARENT of the currentobject: (gv :SELF :parent :left).
In this case, ov is used to specify a path. Slot :PARENT is accessed to yield an object. The resulting
object is accessed and the value of its :LEFT slot is returned. Because (gv : SELF) is such a common
idiom, KR provides the equivalent macro GVL. The expression above could have been written as (gvi
:parent :left).

An advantage of computing dependencies dynamically is that fewer dependencies may be set up.
Imagine an expression that contains a conditional. As long as only one branch of the conditional is taken,
he is no need to establish dependencies to values that might be needed in the other branch. This

prevents unnecessary work, since a change to one of those values could not affect the final value anyway.
Eliminating the need to parse constraint expressions, therefore, results in greater flexibility.

An important distinguishing feature of KR constraints is that they allow fully indirect
references [Vander Zanden 91]. Most existing constraint systems, by comparison, only allow hard-wired
object references [Vander Zanden 89, Myers 88]. In KR, constraints may refer to slots of other objects
indirectly. A typical example of an indirect reference is shown in Figure 3.

:eft FormulaF104: V (gv :SELF :attached-to :left) 2)

___________CIRCLE-i

RECT-1 2 :left 30
is-a OBJ-3 (dependents: F183)

:attached-to CIRCLE-1
(dependents: F183)

:left Formula F183: (/(gv :SELF :attached-to :left) 2)

Figure 3: An inherited constraint which uses indirect references.

The formula in slot :LEFT of object RECT-12, F183, was inherited from prototype OBJ-3. Slot LEFT in
object RECT-12 is computed by referring to slot :LEFT in object CIRCLE-1. The current value is 15.
obtained by dividing 30 (the value in CIRCLE-i) by 2, as specified in the formula. The name of that object
is stored in slot :ATTACHED-TO. Note that the constraint expression of the formula refers to the target
object only indirectly, using the contents of slot :ArTACHED-TO in the current object (i.e.. :SELF). The
constraint is effectively parameterized. Changing the value of slot :ATTACHED-TO in object RECT-12 will
automatically cause the value of slot :LEFT to be recomputed. The primary advantage of indirect
references is that they allow generic formulas to be defined by an object's prototype. Generic formulas
can be used verbatim in the instances, because they use relative paths without hard-wired object names.

Indirect references in KR constraints are possible because the system records the dependency of such
constraints on all the intervening links of the chain of references. In Figure 3. for example, both the
:ATTACHED-TO slot and object CIRCLE-I'S :LEFT slot list formula F183 as their dependent. If slot

S- ... Second Garnet Compedium

ATTACHED-TO is set to a different value, say object NEW-OBJ, formula F183 is invalidated. When the
value of object RECT-12's :LEFT slot is requested, the formula will recompute a new value using the left
slot of object NEW-OBJ.

It is clear from the previous discussion that constraints interact with other parts of KR. A first
interaction is between constraints and values, because slots can contain either ordinary Lisp values or
formulas. This potential problem is avoided by letting all slot-accessing macros, such as G-VALUE and
Gv, work on either type of slot. If a slot contains an ordinary Lisp value, the macros simply return the
value. If a slot contains a formula, the macros evaluate the formula first (if its cached value is not valid)
and then return the value. This operation may actually trigger a complex chain of nested evaluations,
because the formula may depend on other formulas that also need to be re-evaluated. All of this.
however, happens transparently.

A second interaction is between constraints and inheritance. Because inherited values are actually
copied from the prototype into the instance, a change to a prototype may modify the (inherited) value in
an instance. Consider. for example, the case where object B (an instance of object A) inherits the value of
itS :LEFr slot from A. as shown in Figure 4.

:left 31
(is-parent)

B=/ :is-a-inv B

:is-a A

:left 31
(is-inherited)
(dependents: F17) :top Formula F17: (gv B left)

Figure 4: Modifying a slot in prototype A causes formula F17 to be invalidated.

Slot :TOP of object C is constrained to have the same value as object B's :LEFT slot. Now, imagine that
slot :LEFT in object A is changed. The value in slot :LEFT of instance B was inherited, and therefore it
changes (more precisely, its value is removed and replaced by a non-value, as explained in section 3.1).
Consequently, formula F17 in slot :TOP of object C must be invalidated, since the value on which it
depends has changed.

To address this problem, the inheritance mechanism described earlier is modified as 'ollows. When a
slot is changed, KR checks whether its previous value had been inherited by some other object. this
information is contained in the is-paren-bit of the slot. If so, the instances of the object are recursively
visited. If any instance had inherited the value, the inherited value is removed from the slot. If, in
addition, some formula depends on the instance's slot (as described by the slot's list of dcpendents), the
formula (and the formula's own dependents) are recursively invalidated. This process involves two
distinct graphs: the inheritance hierarchy, through which values may have been inherited from prototypes
into instances, and the constraint graph, which determines how values depend on other values.

Efficient ObEts and Constraints - 12

6. Special Efficiency Features
KR improves the efficiency of the constraint system by caching computed values in formulas. After a

formula is evaluated, its value is cached locally and can then be used over and over until the formula is
invalidated. Access to a cached value in a formula is only slightly slower than access to a locally defined.
regular value.

Another feature that is essential for performance is that user-specified constraints are compiled when
the file they are in is compiled. This is possible because the 0-FORMULA macro expands into a LAMBDA
form containing the formula expression. The resulting code is extremely efficient and takes advantage of
all the built-in optimizations. Inside compiled constraints, for example, slot accessor macros are
expanded into array references.

KR contains several user-controlled features that make it easier to generate very efficient applications.
Firt, much of the error-cbecking code in the system is conditionally compiled. Once an application
program has been thoroughly tested, the user can simply run the system with the "no-debug" version of
KR. which eliminates most error checks. A second mechanism allows the application programmer to
specify that certain paths in indirect reference constraints are immutable. For well-debugged object
hierarchies, this declaration allows constraint re-evaluation to become considerably faster by avoiding
unnecessary path traversals. It also saves storage by preventing unnecessary dependencies from being
created. A third mechanism, which is nearing completion, allows the programmer to declare that certain
slots in an object are "constant", i.e., their value will never change after the object is created. This
information is stored in a slot's constant-bit. Formulas that only depend on constant slots can then be
eliminated automatically, further improving efficiency and storage requirements.

7. Conclusions
The current implementation of KR is the result of our collective experience in using the system over the

past several years. Whenever a choice existed, we have opted for solutions that could be implemented
efficiently without making the programming interface unnecessarily complex.

KR is a very flexible object system. It supports multiple inheritance on both system-defined and
user-defined inheritance slots, automatically maintained inverse slots, and the prototype-instance model
of inheritance. Prototypes may be modified dynamically, and the results are immediately propagated to
instances. Any object may be used as a prototype; no compile-time declarations are necessary. Slots may
be added and removed from objects at will. It is also possible to change the prototype of any instance
from one object to another, causing all values that were inherited from the old prototype to change
appropriately.

KR also provides a very flexible constraint system. New constraints may be created dynamically. and
may be installed on any slot. Constraints can be specified as arbitrarily complex Lisp expressions.
Moreover, constraints can use indirect references, which offer maximum flexibility by allowing values to
be obtained from different objects at runtime. Constraints and inheritance interact properly. and changes
in the inhentance hierarchy are propagated through the constraint hierarchy as well.

KR demonstrates that object-oriented programming and constraint maintenance can be effectively
integrated. This combination results in great flexibility and a unique programming style in which much
of the functionality usually associated with method invocation is performed by constraints. The system is
the only widely used object-oriented system in which the prototype-instance model is combined with
copy-down multiple inheritance. We are currently experimenting with extensions that will further
improve performance, such as user-specified declarations of constant slots and eager constraint
evaluation.

13- Second Garnet Compendium

Acknowledgements
This research was sponsored by the Avionics Laboratory, Wright Research and Development Center,

Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C- 1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Bibliography
[Bobrow et al. 89] Bobrow, D.G.; DeMichiel, L.G.; Gabriel, R.P.; Keene, S.E., Kiczales, G.; Moon, D.A.

Common Lisp Object System Specification.
LISP and Symbolic Computation I(3/4):245-394, January, 1989.

[Boming 791 Alan Boming.
Thinglab: A Constraint-Oriented Simulation Laboratory.
Technical Report SSL-79-3, Xerox Palo Alto Research Center, July, 1979.

[Brachman-771 Brachman, R.J.
A structural paradigm for representing knowledge.
PhD thesis, Harvard University, May, 1977.

(DeMichiel 89] DeMichiel, L.G.
Overview: The Common Lisp Object System.
LISP and Symbolic Computation 1(3/4):227-244, January, 1989.

[Fox et al. 841 Fox, M.S.; Wright, J.M.; Adam, D.
Experiences with SRL: an analysis of a frame-based knowledge representation.
In First International Workshop on Expert Database Systems. 1984.

[Giuse 881 Giuse, D.A.
LISP as a rapid prototyping environment: the Chinese Tutor.
LISP and Symbolic Computation 1(2):165-184, September, 1988.

[Giuse 891 Giuse, D.
Efficient Frame Systems.
Lecture Notes in Artificial Intelligence - EPIA 89.
In J.P. Martins and E.M. Morgado,
Springer-Verlag, Berlin, 1989, pages 39-50.

[Giuse 901 Giuse, D.A.
Efficient Knowledge Representation Systems.
Knowledge Engineering Review 5(1):35-50, 1990.

[Goldberg and Robson 83]
Goldberg, A.; Robson, D.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, MA, 1983.

[Lieberman 86] Lieberman, H.
Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems.
Sigplan Notices 21(1 1):214-223, November, 1986.
ACM Conference on Object-Oriented Programming Systems Languages and

Applications; OOPSLA'86.

Efficient Objects and Consuaints - 14

[Myers 88] Brad A. Myers.
Creating User Interfaces by Demonstration.
Academic Press, Boston. 1988.

[Myers 89] Myers, B.A.; Vander Zanden. B.; Dannenberg, R.B.
Creating Graphical Interactive Application Objects by Demonstration.
In ACM SIGGRAPH Symposium on User Interface Software and Technology, pages

95-104. Proceedings UIST'89. Williamsburg, VA, Nov, 1989.

[Myers 90] Myers B.A., Giuse D.A., Dannenberg R.B.. Vander Zanden B., Kosbie D.S., Pervin
E.C., Mickish A., Marchal P.
Garnet Comprehensive Support for Graphical, Highly Interactive User Interfaces.
IEEE Computer 23(11):71-85, Nov, 1990.
Also appeared in Japanese in Nikkei Electronics, vol. 3-18 no. 522, 187-203.

[Myers 921 Brad A. Myers, Dario Giuse, and Brad Vander Zanden.
Declarative Object-Oriented Programming; How to Program in a Prototype-Instance

System Without Methods.
1992.
Submitted for Publication.

[Stroustrup 861 Stroustrup, B.
The C++ Programming Language.
Addison Wesley, 1986.

[Szekely and Myers 88]
Szekely, P.A. and Myers, B.A.
A User Interface Toolkit Based on Graphical Objects and Constraints.
Sigplan Notices 23(11):36-45. November. 1988.

[Tesler 81] Tesler, L.
The Smalltalk Environment.
BYTE 8:90-147, August, 1981.

[Tygar 87] 1. D. Tygar and J. M. Wing.
Visual Specification of Security Constraints.
In 1987 Workshop on Visual Languages, pages 288-301. Visual Language'87,

Linkoping, Sweden, Aug, 1987.

[Ungar and Smith 911
Ungar, D.; Smith, R.B.
SELF: The Power of Simplicity.
Lisp and Symbolic Computation 4(3): 187-205, July, 199 1.

[Vander Zanden 89]
Vander Zanden, B.
Constraint Grammars-- A New Model for Specifying Graphical Applications.
In Human Factors in Computing Systems. pages 325-330. Proceedings SIGCHI'89,

Austin, TX, April. 1989.

[Vander Zanden 911
Vander Zanden, B.; Myers. B.A.; Giuse. D.A.; Szekely, P.
The Importance of Pointer Variables in Constraint Models.
In ACM SIGGRAPH Symposium on User Interface Software and Technology. pages

155-164. Proceedings UTST'91, Hilton Head, SC, Nov., 1991.

15- Second Garnet Compendium

[Weinreb and Moon 811
Weinreb, D. and Moon, D.
Lsp Machine Manual
Fourth Edition edition, Symbolics, Inc., Cambridge, MA, 198 1.

(Wright and Fox 83]
K. Wright, M. Fox.
SRL: Schema Representation Language.
Technical Report, Carnegie-Mellon University, December, 1983.

(Young 89] Young. S.R.; Haupcmann, A.G.; Ward, W.H., Smith, E.T.; Werner. P.
High-level Knowledge Sources in Usable Speech Recognition Systems.
Communcations of the ACM 32(2): 183-194, February, 1989.

17- Second Garnet Compendium

IRcpnnted fromn ACM Symposium on User Interface Softw~are and Tecnlg
Hilton Head. SC. Nov. I11- 13, 199 1. pp. 155-164

The Importance of Pointer Variables in Constraint Models
&%,d Varida r2arndn Brad A. Ww yn Pedro Szekaly

Dwon Gime

CoMputer Science Depantrent School of Convitter Science USC/lOnfaation Sciences Institute
University of Tennessee Carnegie Mellon University 4676 Axiwralty Way

K~noxville. TN 37996 Pittsburgh, PA 15213 Marina del Rey, CA 90292
bvz~cs~ntkedu bradmyercs~cm.uedu szekely@Lsi.edu

dzg@cs.cImhLC*I

Abstrawt The advantage of the constraint model is that changed data
is automatically propagated to the appropriate places and

Coaphic~al tools ame wasingIy using coaumits to specif rlationships are automatically maintained. Thus. if a user
the graphical layout and behavior of many Pamt of an ap- drags the rectagle around the screen, a constraint solver
plication. However. conventional constraints directly en- continuously tesatisties the above equation. causing the
code the object they refeence, and thus canot provide cr!'- to follow the retagle wround the display.
support for the dynamic mumirm creation an manipulation
ci application object. Thispapertliscusse an eensionto' Ha',,wg a constraint solver automatically mwantain a set of
crre nt constraint models that allows constrints to in- iniatiouships is obviously advantageous. since it saves the
directly referenc object through pointe veariesin prograrr= ftom having to manually write code to ac-
Pointe vauiabis perMit juSMMMins 10 Cleat te C08 COmlplisht the same task. However, conventiidal constraints
suaint equivalent of procedures in traditional prpmurn directly enoethe objects they reference. For example,
Uoangags This procedural jaestjrglci allow my y-rect is haiticoded into the above constraint. Thus they
to Ioe a wide any of dynamic application behavor. cannot support fth dynamic runtime creation of objects,
simpilies the smpleneatagiom of strueuun object ad amc tWe constraints in the newly created objects will refer-
dunm=WX=oaa systems, sand Improves the storagle and et- emc the wrong objcts. These cownstints also cannot
ficiency of h~ighl interwctive, graphica applicatons, It model any application behavior which involves objects that.
also promotes a simpler, mote effective style of program- continuously change their relationships to other objects.
musg than couvMMona constrints. Contraints that use For ewariple, a feedback object must highlight any item in
pointer variables are powerful enough to allow a com a me=u an arrow might point at different boxes in a boxes-
prehensive user interface toolkit to be built for the first d=u md-arrows editor, and a truck switches streets as it
-X top of a cosran syte navigates through a city.

Keywords: Constraints, development tools. incrmetal al- These shortcomings can be rmnedied by adding pointer
gonithis; variables to constraints that allow objects to indirectly ref-

erence other objects (these constrints are called indirect
I Introduction reference constrrims). For example, the above constraint

could be m-ewiite as':
User interface toolkits, particularly graphical layout tools.
are incretasingly adopting the constraint model of computa- left - solf.obl-over.riqht *10
tion. The constraint model uses equations to denote ob) - 'ove - sy-reot

telationships between two or more objects. For example, a
designer might write the following equation to, position a where self refers to the object containing the variable
circle 10 pixels to the right of a rectangle: ietft, in this case, the circle. By changing the value of the

left - my-ruct.right + 10
pormniemof to copy Without fee ail or Part of ti~s Material is
granted Provided tha the too"e awe not rmade or distinbuted for I*O anprot readability, we am expasmS constrmts w conventional
dire"t owMmercial advantage, the ACM copyright notice and the safix somma rather mLop's prefix noam In Gejiet do constrinat
tite atf te tlcson end its date appear and notice is given would wmally be wyman as ((gvl : obj -over 'right)
that copying to "y permnission of the Associatoon for Computing; 10) w-hare gvl stsods for pet value duough tink. The tha gSo
Mecimnery. To copy othserwise, or to republish. requiresa I** befme m tvumsishl Ame di ob kpdw acte iation used in this paper.
ondlor specific pevmaeaaon.
0 1991 ACM 0-89791-451 -191 /00100I1S55... $1.SO

November 11-13, 1991 UIST*91 155

Importance of Pointer Variables in Constraints - 18

variable obj -over, the cimle can be positioned to the right Indirect reference constraints also provide an entirely new
of any object. With this extension, constraints can support style of programming that seems much simpler and more
the natine creation of objects and express the dynanuc effective than conventional constraints. It will become ap-
behavios that occur inside an application window, as well parent bow indirect reference constuints lead to far simpler
as the static layout relationships that occr around the ap- implementations as this paper describes many of the ifrrpor-
plkation window, taut applications of indirect reference constraints. This

paper will also discuss how indirect reference constraints
Pointer variables allow the proganmmer to define the con- can enhance the performance of an application while
saint equivalent of procedures in traditional progranming decreasing its storage demands. Finally, various =n-
languages. Generalizing direct refences into indirect planentation strategies for indirect reference constraints
references is akin to defining the parametc of a proce- will be discu&sd
dure. The advantages of procedural abstraction am well
known. but the implementation of procedural abstraction in 2 ROted Work
constraint sysms is still quite novel. Consaint
procedural abstraMcons grealy simplify the implementation While pointer variables are commonly incorporated in pro-
of many interface features and enable the implementation graMnMng languages, they have only recently been incor-
of new onis that would have been unwieldy without porated in their full generality in constraint systems. A

procedural abstacioa: resuicted version of indirect reference constraints first ap-

"* Feedback. in which objects, such as check- peared in Coral (17]. Coral permitted a designer to provide

marks or inverted rectangles. may appear with a list of objects that a constraint could reference. For ex-

ny item in a st of o , ample, a designer could provide a list of menu items and a
feedback object would be able to appear over any of them.

"* Prototype-lnstnce models, in which instances However, Coral did not allow constraints to reference ar-
of constraints must be inherited from bitrary objects through variables, and thus did not provide
prototypes and references must be adjusted so the full generality of indirect reference constraints.
that they point to the instance rather than the
prottype. Thinglab [21 also provides a limited form of indirect refer-

ence constraints. Designers can construct pathnares that
* Progrartming by example, in wLich con- allow a constraint to traverse a structure hierarchy to find

swaints that are demonstrated for example o- an object. If one of the components in the stuctue hierar-
jeers must be converted to general constraints chy changes% the new object will be automatically
that work with any object referenced by the coaistrant. However, arbitrary references;

"* Abstract specification of layout in which to objects through pointer variables are not supported. Pen-

generic objects are laid out using constraints, guims [7] supports a model of indirect reference constraints

and the speci/'k widgets are filled in later, that is similar to the one described in this paper but it uses a

based on such parameters as the availabilty of different constraint solving algorithm. Many other sys-

screen space-, tens, such as Grow [1], Apogee [51, Peridot [91 and CON-
STRAINT [19], allow constraints to directly reference ob-

"* Simlzations, in which objects ar frequently jects but do not allow indirect references.
constrained to new and different objects, for
example objects moving between the Kaleidoscope supports a different type of
machines on a factory floor. absuction=-constraiat abstraction rather than procedural

abstraction-in which procedures consist of a set of
Over the last couple years, we have gained considerable parameterized constraint statements and produce as output
experience using indirect reference constraints in the Gar- a set of constraints instantiated with the parameters passed
net project [1I]. We have found that they are crucial for to the procedure [3).
implementing the insides of application windows, which is
the hardest and most time-consuming portion of an inter- Finally, a number of researchers have developed models
tace to consnuct. In Garnet. constraints coosist of arbitrary that allow constraints to have variables, but not pointer
pieces of Lisp code and consequently, they are used to variables [16. 15, 8. 14]. For example, a progranmr could
Specify more than just graphical layouts. For example, they write a constraint such as feedback.position =

are used to coirrnicate information between multiple iteml.position + offset, initially assign the value of 10 to
threads of a dialog, to compute the attribute values of ob- offset, and later assign the valuc of 20 to offset.
jects, and to monitor the states of various objects. The However, a programmer could not write a constraint of the
procedural abstraction provided by indiret reference con- form feedback.posution : self.obj-over.posirton + offset,

staints is so powerful that Garnet implezrents its toolkit on where ob) -over is a pointer variable that points to an
top of the constraints [Ill. No other constraint-based arbitrary object.
toolkit does this.

1 56 UIST'91 Hilton Head, South Carolina

19- Second Garnet Compendium

3 Applications of Indirect Reference Constraints 3.2 Stuctured Objects

Indirect reference constraints can be used to implement Pointer variables simplify the integration of constraints into
many wpas of an application that are difficult or infeasible a structured object system. A structured object consists of
to implement with direct reference constraints. These in- several parts, such as the labeled box in Figure 2. which
clude feedback, copying and instancing of composite ob. consists of a rectangle and a piece of text. Typically these
jects with coisuiaits in them, progrsuning by example, parts are mutually constrained. For example, the label is
abstract specifcation of layouts, and simulations. centered inside the box and the size of the box depends on
3.1 Feedback the size of the label.

Most direct manipulation int es provide feedback to the
usr" while performing an operation. For example, a rec-
tankle may highlight the item that the user is cunezitly
pointing at in a menu (Figure l.a). While it is generally
impractical to handle feedback objects using direct refer-
ence constraints, they are easily handled using indirect ref- 305
erence constraints. For example, the feedback object in
Figure L.a must be able to highlight any of the menu items,
but a direct reference constraint will only allow it to high.
light one of these items. In contrast, indirect reference (a)
constraints allow the feedback object to reference any of
these menu items through a variable, such as obi -over. Labeled Scsi owwg
This technique works equally well for feedback objects that
highlight a fixed set of objects, such as the objects in a
menu, or a dynamic set of objects, such as the objects in a
drawing window (Figures Ia and l.b).

(b)

Labeled Box
Juwary instance

lFebruery
Marcia
April

Juty

higust (c)

SPctober
Noebr Flgur L.

December Sauctued objects, such as this labeled box (a). ae built

up bom other objects. such as this rectangle and number
(b). Each object maintains pointers to its parent and its

(a) (b) children, so that constraints can indirectly reference one
another through pointers. This facilitates the copying
and instancing of objects., since the object system

Figure 1. simply sets the pointers in the new objects, and the

The rectangular feedback object in the menu and the constrints automatically reference the appropriate ob-
selection handles in the drawing editor use constraints jects (c).
to center themselves over the selected items and to
change their dimensions to the dimensions of the
selected item. By indirectly acossmg a selected item Interactive applications need to make copies or instances of
through the variable obj -over. the feedback objects these objects at runtime (e.g.. creating new objects in a
we able to appear both over any item in a static set of drawing program, creating new circuit elements in a circuit
objects, such as the menu items (a). or any item in a simulation program). These operations can be easily im-
dynamic set of objects, such as the objects in the draw- plemented using indirect reference constraints, but are quite
ing editor (b). difficult to implement in regular constraint systems.

In an indirect reference constraint system, each object
maintains a pointer to its parent, and a set of pointers to its

November 11-13, 1991 UIST'91 157

1M22MFA of Pointer Variables in Constraints .20

childrin (Figure 2.b). Constraiats referewc objects by fol- object can be instanced or copied using the scheme
lowing the appropriate pointers. For example, if the label's described in the previous section.
paret pointer is contained in the variable parent and the
labeled box keeps pointme to its children in the variables In Figure 3. a designer is using Lapidary to create a boxes-
laboi and box, then the label can be centmed inside the and-arrows editor. The designer has drawn an example
box using the following consaints picat= in which the arrows are attached to the center of the

boxes they connect. Lapidary represents the constraints of
center-: - self.parent. box. center-, the line internally as indirect reference constraints;
ceuter-y - **lf.par*Dt.box.center-y

To create an instance of an object, the object syut creates
innces of each of the object's components and sets the-onw variables (Figure; U-). The object system also
cnresm instances of each of the constraints in the
prototype's components and stores them in the appropriate
places in the new insutne's components. No changes are
needed to the constraint expression. The constrants in the
newly created objects will automatically reference the ap-
prprate objects sice they will follow the pointers in the
i objects rather than in the prototype objects. For
example, the constraint that computes the value for
center-x in the label instance will follow the parent and
box pointes in the labeled box souctis hierrmchy and
retieve the center-x value of the rectangle ian.ig 3.

An example pictrne demonsnuing that the endpoints of
In a direct reference system, constraints must use an rrow should be sttached to the cnters of the boxes
hudeoded references to objects. For example, the label in it connects. An ineface builder will enerahlze this
Figre 2 could be centered inside the box using the follow- errw into a prototype that can connect any pair of
ft direct reference coastrainws boxes.

center-% - box.Ceater-x
center-y - box.center-y

endptl - self.fro'-obj.center
When a new instance of labeled-box is created, the object *ndpt2 - self.to-obj .center

system will have to replace all references to box with fro.-obj - boxi
references to the newly created instance of box. to-obj - bo02

The object system will have to track down the references The designer can save this avow and the application can

by manually traverasg the prototype's hierirchy to ind use it as a prootype. When the boxes-and-arrows editor
where box is in relation to label, (the relation is go to creates instances of this arrow, it stores pointers to the ap-
label's paert, which is labeled box, then to labeled box's propriate boxes in the from-obj and to-obi 'variables.
first child, which is box), then use the same traversal in the and the constraints automatically attach the endpoints of

instance's hierarchy to find the appropriate reference to the the arrow instance to the centers of the boxes. The applica-
newly created instance of box. Thus it is much simpler and tion does not need to know anything about the constraints,
more efficient to implement copying and instancing opera- structure, or graphics of the line. The constraints on the
tions in indirect refemnce systems than in direct reference endpoints could connect centers to centers, right sides to
s-sters, left sides, or even use a complex fomula that computes the

nearest sides and tries to avoid crossing other lines.
3.3 Programming by Example 3.4 Abstract Specification of Layouts

Indirect reference constraints make it easier to implement Io
systems that employ demonstrational programming, such as Indirect reference constrants facilitate the specification of
the graphical interactive design tool Lapidary (101. In a layouts, independently of the objects to be layed out. For
demonstrational system, a user draws an example picture or examplee a designer smght want to specify that a generic
demonstrates an example behavior, and then the system feedback object should appear over a selected object. The
creates a prototype object or behavior by generalizing the actual type of feedback used might depend on the size of
picture or demonstrated behavior. If the denonstrational the selected object and the type of the selected object. As
system uses indirect reference constraints. then it is easy to another exafnle. Humanoid [181 and Jade [201 allow a
generalize these examples. In fact, the example that the designer to define constria nt-based rules that descnbe the
user draws or demonstrates is already a prototype, since the general layout of dialog boxes in terns of the generic pars

158 UIST'91 Hilton Head, South Carolina

21 - Second Garnet Compendium

of a dialog box, such as a title, a body that contains the - **lf.from-station.center-x
items of the dialog box, an OK button, and a can button. ceoter-x - solf. from-sation.cent.r-x+(self.x-distance - self.time)
One can then apply the rules to different dialog boxes, ir- to-station -(st-ion-b
respective of the widgets that rill the roles of the different from-station - station-a
parts. For example, storing the following comaint on the
x Coordinate of the OK button will force the button to be x-distance computes the distance between the old and
placed 10 pixels to the right of the dialog box's title, new stations, and center-x contains the current x position
regardless of which widget is used for the title or the OK of the carton. As the application program mcrements t i me
buttoa: from 0 to 1. the carton moves smoothly between its old and

new assembly station. To prepare for the next step of the
left - wolf. iprent .title. right, + 10 animaton, the application resets the tme to 0. stores sta-

Stion B in from-station, and stores a new station. C, in
to-station.

Simullatons often require objects to move smoothly be- 4 Performance and Implementatlon Advantages of
tween various points of the display. For example, sort Indirect Reference Constraints
animations show objects moving around in linked lists or
arrays, navigation systems move objects around u'anspo- The generalization of constraints using pointer variables
tation corridors. and manufacturing systeas route objects can improve the effciency of an application by reducing
through the machines on a factory floor. I reference the number of constraints and objects it uses, reducing the
constraints model this motion by using variables to refer- size of the constraints it uses, and reducing the number of
ence the beginning and target positions. constraints that it must dynamically create and delete. In-

direct reference constraints also make it easier for the con-For example. suppose we w'ant the canoi in Figure 4 to staint system to maintain one rather than multiple copies
glide from station A to station B as if it were on a conveyor of a constraint and make it easier to statically compile the
belt. This could be done by writing a set of consuaints that constraints.
interpolate the carton's position based on a timer and the
stations positions; Storage improvements come in two forms. First. by allow-

ing objects to be constrained to many different objects, in-
direct reference constraints may significantly decrease the
number of objects which an application creates. For ex-

SAIample, suppose a feedback object should highlight the cur-
ready selected item in a menu, as in Figure La. If direct
reference constraints are the only constraints available, the

(a) designer may create a separate feedback object for each
menu item, since the constraints will bind each feedback
object to exactly one item. However, as noted in Section
3.1, indirect reference constraints allow a feedback objectto highlight any menu item, and thus one feedback object
suffices. Second, indirect reference constraints can be wnt-

(b) ten much more compactly and elegantly than direct refer-
ence constraints. Returning to the feedback example, a
clever designer who is working with direct reference con-

A UamW 9 U. Cstraints might be able to use only one feedback object by
defining constraints which reference every object in a menu
and describe how the feedback object should highlight each

(C) menu item. For example, to implement the feedback object
in Figure l.a, the designer might write the following con-
straint to define the left side of the feedback object:Figmre 4. feedbatck. left - came mont~h

An assembly line with stations connected by a conveyor JanuaekY t c: Jan. left
belt. A caton should be centeao above the stton tha "February": Feb. left

is currently procesing it (a), and ctons should move December*: Dec. left
smoothly from one station to the next, (b) and (c). where month is a swing variable containing the currently

selected month.

time - 0 However, this solution has four drawbacks:
x-distance - self to-stationcenter-x eNon-modular ind Inelegant: If the designer

November 11-13, 1991 UIST'91 159

Importance of Pointer Variables in Constraints - 22

adds a new menu item. the designer must also uipractical from a storage Ftandpoint to maintain one feed-
remember to modify the constraints in the back object for each item. Thus. the application may main-
feedback object. tam only one feedback object and destroy the old con-

" S T c ra m straints and create new constraints each Utme the feedback
separathe cnditionstan tions, w h caueele moves to a new item. Th• overhead involved in destroyingseparate couditions and actions. which causes5 and creating these constraints can be avoided if idrc

the code to occupy a considerable amount of reference constraints arb used.

space at runtin. Also, 12 dependency

pouiters. one for each object, must be main- Indirect reference constraints also simplify the construction
tamed by the constrai system. of the constraint system. Fist, the formula for an inoirect

"* Efficiency. The constraint depends on all reference constraint can be stored in a prototype and in-
twelve objects. If one object changes. even if stances of the prototype can maintain pointers to this for-
it is not the currently selected object. the con- mula. Thus, many instances of a prototype constraint can
traint must be reevaluated, be created, but the formula is created only once. Second.

the parameters to a constraint are implicitly declared by

"*Dynamic Sets: This technique only works for pointer variables, so the constraint system can statically
static sets of objects, since the objects must be compile constraunts by wrapping a function header around
bardcoded in the constrainL It cannot be used them. This considerably simplifies implementing a con-
to describe dynamic sets of objects, such as stAint system in an existing general-purpose language. For
the objects in the drawing window in Figure example, Garnet constraints can be arbitrary Lisp code.
l.b. Direct reference systems typically also maintain only one

copy of a constraint and statically compile IL However, to
Indirec reference constraints suffer from none of these dis- accomplish this, they require the user to write the constraint
advantages. The corresponding indirect reference con- as a function, complete with parameters denoting the direct
stramiii would be: references, or else parse the constraint to determine the

direct references. However, we have discovered that users
f..dbamck..fgt - *fif.ebi-ever.ieft flind it iritating and cumbersome to have to define

where obj -over is a pointer to the selected menu item. parameters for constraints. For example. it is much more
elegant and compact to write

This constraint is both compact and modular. The designer feedback.left - self.ob -over.left
can add or delete items from the menu without worrying than to write
about the effect of the change on the feedback object. It constraint left-align (obj) (obj.left I
occupies less spa than the corresponding direct reference fodback .left - left-aliqn(self .obj-over)
constraint and requires only two dependency pointers, one Similarly, it can be quite difficult to write a parser to search
to the variable ohj -over and one to the selected menu through each constraint and locate the direct references.
giem t depends only on the obj-over variable and the
currently selected menu i•e, so it will only be reevaluated 5 Implementation
when absolutely necessary. Finally, this type of constraint
can handle dynamic sets of objects. If additional items are The algorithms for implementing indirect reference con-
added to the menu, the constraint automatically deals with strAints build on the algorithms for implementing direct ref-
them without having to be rewritten. ence constraints.

The efficiency advantage of indirect reference constraints 5.1 Lazy Evaluation
derives in part from their storage advantage. Fewer con-
straints means fewer constraints to solve, and thus, less A variation of nuUificatioo/reevaluation algorithms can be
work for an equation solver. For example, a constraint used to handle indirect reference constraints.
solver that employs eager evaluation might take only one Nuffificationlreevaluation algorithms repczent the con-
fifth the time to set up the feedback for a five item menu straints as a directed graph with nodes represeianng con-
using indirect reference constraints instead of direc refer- straints, and edges (called dependencies) representir~g data
ence constraints, because there are only one fifth as many flowing from one constraint to another (Figure 5.a). Wben
constraints to solve. the value of a node changes (typically a "leaf'" node such

as e or/), all nodes that directly or indirectly depend on this
Efficiency advantages also arise because 1) an object sys- changed node are marked out of date. When the value of a
tern does not have to locale and replace direct references; node is requested, the constraint that computes its value
and 2) fewer constraints have to be dynamically created starts demanding the values of other nodes on which it
and destroyed. The search and replace issue was discussed depends. If these nodes are out of date, they will recur-
in section 3.2. To illustrate the reduction in dynamically sively demand the values of the nodes they depend on. until
created and destroyed constraints, consider the construction eventually nodes are reached whose values are up to date.
of a menu using direct reference constraints. It may be at which point the constraints can compute their value and

160 UIST'91 Hilton Head, South Carolina

23- Second Garnet Compendium

meturn (13.61. For example. Vo that node e is changed non of the constraint will ooiy have to be evaluated if tOx
in Figure i. The lazy evaluator will mark the aodes V. d, condition itself changes. Since the conmint depends on
and a as out of date (Figure 5.b). If the value of node a is the variables in this condition. it will be marked out of date
then requested, a will demand the value of d. 4 is out of when one of these variables changes and wall be autoatu-
date so it dmands the values of e andf, both of which are cally reevaluated (of course it wlU 9so be reevaluaaed if
up to dat computes its own value. marts itself up to date, one of the variables in the branch that was last executed Is
and •rn its value to a. a then demands the value of c changed). Again. the ounmint solver will add depen-
which is up to date. comqputes its own value, nm itself up dency edges to this cotizan from the new set of varables
to dae. and retrns, it Mftenes in whichever branch is exwcuted and reove

edges that emananm brm variables a the previously ex-
N • ""tionrevalrmtin algllothms w• originally con- ecmedbanch. Th cosmrais with conditionals will al-

ns IctI with the assump•on ta the edges s the graph ways be evaluated correctly.
remain staic wh-le the COns1ait solver is evaluating the
graph. However indirect rdeenmce cons- inm can caue 5. EW lvulamton
the gaph to dynamically change as the cOSmi- me be-
ing evaluated, because the poinr variables my change. Our eager evaluatin algorithm uses a variation of an eager
causing a constaint to ac=e infoMAtM from a different evaluatr developed by Roger Hoover 14]. Like the lazy
set of nodes. For example. when the contraint on node a evaluatr. this algorit•h nukes use of dtauflow graphs.
is being evaluated, it may sum tding nOde b rather However, it ass=s piorities to the nodes in the graph.
than node c (Figure 5.c). indicatin ft nodes relative positio in topological order

(Figure 6.a). When a node changes value, all i immediate
To handle this Situation. we have etended the algrithm so successors we added to a priony queue based on their
that dependencies can be dynamcaly created and deleted .-.. s. Wbcn the evalao starts executing. it removes
as V'e constrints are being evaluated. Dependeocies are '-e loIest Priority node fron the qUeue and evaluates it.
titesta ed so that ifthey me notusedby aCoWuzo-t.t m a By evalut the lowest priity node in the queue, the
subsquet evaluation, they betause iale amd we dis- evaluator ensures that the values of all nodes that the cm-
caded. When a constraint demands a variable, ft con- smint associated with this node may request me up to date.

Ssolver eitber creates a new depe. ftry beten te
cOS=rai and the variable if such a depgedey aid s i .e Hoover algorilzn the priorities ame aninained in a
already exist, or else updates the 9ma amp on th depen- ordered list and each node n the datalow graph points W
dency so that it matches the 0st p o the constraint (a on of these priocities. Comparisos between priorties can
constrint is timestamped each time its evaliuaM. The be pafomd in 0(1) t and inertions of nww priorities
con•saint solmve removes stale as it in- cma be accoampied in amostiud O(i) time. whe an
validates constraius. Befoe following a dependency, it edge is added to a dataflow graph, the algorithm checks
checks whether f dependecy's t s n matces the wbetbr the priority of the source node is gr=tr than or
timnestnp of the constraint it poinm to. If the two tins- equal to te pnority of the destination node (data flows
taMPS disagree., t dependency i diseLred. A beneficial fm ft source node to the detinaon node; for example e
side effect of this scheme is that comsntas which involve is the sorce node mad h is the destation node for the edge
conditiocals depend only on the variables tna make up the that connects these nodes). If the priorities ae out of order.
condition and the branch of the condition that is executed. the 3lgoritm follows the SUcCesSors of the destinaton node
Thus the UmMbeCr of &dpenecy pointers ad ntnecessary trasmivy until it reaches nodes whose priority gumbers
evaluations ae minimized a m greater than the priority of the somrce node (the Hoover

algorithm will also follow predecessors of the soure node;
To see that this scherme wotk o•e that a constint will however, to save space we do not maintain backpmntr•s
dYyamicay add or delete dependencies only if it contains and thus we cannot search backward from nodes). These
pointers or conditionals. If a constraint depends on pointer nodes ar termed boundary nodes. The algorithm works
variables, the constraint will be marked out of date when back from these boundary nodes and assgns to the Inter-
the poine variables change and the constint will be mediate nodes new priority numbers that are between the
.eevakluted when its value is next requested At this poinL priortty numbers of the source and boundary nodes. If it
the constraint solver wi% add edges to this constraint from runs out of existing priority numbers, it creates new ones
the new se of nodes it references (Figure 5.c). The depen- by inserting records into the ordered list directly after the
dencies to variables that are not requested by the consaui t record associated with the priority number of the source
on Ibis evaluation will become stale and be removed the node.
next time these dependencies are examined. Thus the con-
straint will demand the values of the correct set of nodes For example. suppose a dependency from node d to f is
and will obtain the correct result. added in Figure 6.b. Node d has priority 2 while node f has

priority 1 so the nodes are out of order. The algorithm goes
In the case of a conditional, the branch or branches of the to node g, which has a priority of 2, and then to node ha.
conditional that were ignored during the previous evalna- which has a priority of 3. Since this is greater than node d-s

November 11-13, 1991 UIST'91 161

Ivn, tmnce of Pointer Variables in Constraints .24

d d

etef e f

(a) (b) (C)

Figure &

(a) Convaikits we repr•mned au nodes in a directed pgph. The edges relieenrt das computed by a conmsii that another
constaint uses. (b) The gray nodes rupresam nodes maked out of dae when node # is changed. (c) Node a now depends on
node b rather han node c.

2 2 2.5_

e 2.5 1i Z25 Z5 eL25~z

o b co b0 i C0

(a) (b) (C)

Figure 6.

(a) Number ere assigned to nodes according to the oider in which they am evaluated. Nodes cannot be evaluated until all their
wedeceuor have been evaluated. Darkened nodes rpsent evaluated nodes. Nodes d and fare ready for evaluauon. (b) Node f
now depends on node d as well as node c. (c) Nodes fand g must be renumbered to make their priorites agree with dwir posimon
in ological order.

pronty, the search stops here and node h becomes a bound- existing priorities, so it inserts a new one in the ordered list
ary node. In this case there are is one priority, 2.5, between and assigns it to nodef (Figure 6.c).
2 and 3 in the priority list, so the algorithm assigns this
priority to node g.2 At this point the algorithm runs out of The Hoover algorithm assumes that dataflow graphs cannot

change once constaint evaluation begins, so the reordering
schenme and the evaluator can be invoked in sequence.

2We we meg raznali mmbers for illusmratve purpom only. The However indirect eference constanits may cause the edges
wpJa aJgmtnhm for numantaining the ordered list uses only ntegeean md of the graph to change during constraint evaluation. Thus

does some reoero g to ensure hat only mtegers re used.

162 UIST'91 Hilton Head, South Carolina

25- Second Garnet Compendium

the numbers assigned to We nodes may become incorrect Another impimentation issue that arises is what to do with
and fonre an equation to be evaluated prematurely. To Constrints coOMMing variables that am l or which refer-
overcme this difficulty, we have taken t approach of ence deleted objects. The two options considered in Garnet
dynamically updating the topological order each tne the were 1) to destroy the co.stait. keeping its previously
graph changes, and evalnating nodes according to this computed value, or 2) to keep the consturat and retumn its
revised topological order. In other words, the reordering previously computed value. Under option two, the coo-
algor thm and the conmsraint evialnatm intrleaved. snadnt would again be evaluated once all its variubles point
Dependeace me d u calky cmeasd and deletd in the at valid objects. We setied on the second option since, in
ame way as in thelazy evaluation algowhtm mawy cases, the csaint will be used again. For ea-

ple, feedback objects tha we invisible may bave thei
Mw tire complexiy ot ts algoSthm depends on the num- obi -over vuiables set to nil yet the constaints should be
ber of reodme ss and the tim required by ech reordering. maintained so that they can corectly position the feedback
Asuaning a bounded number of variables per equation, a object oa it ij made visible and its obi - over variable is
reasonable assumption for constrains in graphical imm.- set to a newly selected item.
bees, a reodein requires 0W) tme where k is the mum-
ber of odes that must be ordered (Hoover's algorithm 6 Status aid Fuure Work
has m additonal log factor in the runing me sc it uses
a pnmty queue to guide in famwad and backward search- Indirect referece 1 ounints have been completely im-
ing however this forward and backward semuing may plemented at a very low level in Garnet. Every layer in
wrdel fewer modes than ou algorithm. thus offsening the Garnet is implemented on top of the constaint system
log fco). Assuming theme an n nodes in the graph, the using uindect refL-Ace conswats. except for the lowest-
worst case ,niing nie of the Agorih is O(dn) wher d level untyped object sysm This includes the graphical
is the n of dynamically added edges. As with most object system, the handling of the input. and all the widget
inremenal algonthms, this wost cse mmmng time is mis- librWie s. In addition, Garnet has approximntely 150 users
icading. since most node evaluaions do not tigger a mar- who have used indirect nrefnce coRSWAInts t generate
deuing and most remodef gs do not visit all n nodes. hundreds of applications
Indeed results based on prelimnary esting of the algo-
ritha suggest that poum variables typically do one of two Ganet currently uses lazy evaluation and a modified user-
2tigs:) tbey shift bet-en nodes whose iority numbe contirlled verion of caching that evaluates a path tte first
ame identical thus causing no reordeuing to occu. or 2) they time the constraint is evalated and then ignos a if the
shift between a fixed set of nodes, and once they have user assnes the fousfaiit solver that the path will never
shifted to the highest nmobernde, reordering neveoccus change. On a SUN Spareation 1+ running Lacid Com-
agan. The fomr cae arises fequemly in simulations mio Lisp. U leisect ztPC to an object though a van-
where an object s typically moving betwum independent able (e.g, s -f.obj-over.-Ift) requres 170
but fairly smilm objecas that have roughly the same umn- m I noods. wh'at= a ",-a refeence (e.g..
bet of constrints and the lat cau arims ftequely in menu- teori . left) o0 a erenfe that uses a cached path

ma's where the last ien has the conswains with the requires 54 tuirosecouds. If a constaint does not have to
highest pirym e (beomse it.is the last item laid out). be reevaluated its pmviously conupted value can be ac-
Thus in practice- the algorithm appeas to faily rapidly ceased in 19 microseconds, regardless of wbedt it is a
quiesce to a state wbere very few morderigs oc during direct vefe Prec or indirect reference CoS2usit. Garnet's
constraint evaluation. constraim solver can solve indirect reference constraints

quickly enough to alow feedback objects to track the
Other fmpln mont f iueM mouse i Meal time or to perform Smooth, realrm anira-

toes, even in IMr consuaint-based appcatio•so. For ex-
Each time a coasuaint is evaluated, its value is cached so ample, the Lapidary interactive design too! (101 consists of
that the ext time the constraint's value is requested, the 16000 lines of Lisp code and 23500 constraints, all of
constaint will not be reevaluated unless one of its which are indirect reference coustsint, and is fast enough
parameters has changed. Similarly the values of paths can to provide instantaneous feedback to the user.
be cached to improve efficiency. For example, in the
labeled box example presented in Section 3.2, the label We have a wurking version of an eager evaluator that we
accessed the position of the box using the path believe is more efficient than the current lazy evaluator and
(self. parent, .box). The fis dme this path is which should be implemented in Garnet in the near future.
evaluated, ihe constraint solver can cache the resulting We also have a design for two-way indiret reference coa-
pointer to the box, so that as long as the variables compris- straint systems. Finally, we are examining graphical means
ing the path do not change, the constraint behaves as a of a-acing these constraints so that designers can debug
direct reference constraint The variables on this path still them more easily (12].
maintain dependency pointers to the coMntrait, so that if
one of these variables changes, the path can be reevaluated
and a new value cached for it.

November 11-13, 1991 UIST'91 163

Im-orm-_, of Pointer Variables in Constraints -26

7 Cowclusions and Future Work 9. Brad A. Myers. Creating User Interfaces by
Demonstration. Academic Press. Boston. 1988.

Indirect reference consmints allow procedural abstraction
to be added to constaint systems. Tibs significantly ex- 10. Brad A. Myers, Brad Vander Zanden. and Roger

tends the potential uses of consmnts in interactve applica- B. Dannenberg. Creating Graphical Interactive Application

tions by allowing consthints to express the dynamic be. Objects by Demnoomtion. ACM SIGGRAPH Symposium

havior that occurs inside an application's window. These on User Interface Software and Technology, Proceedings

constraints cas be used to specify animations and feedback UIST*89. Wiliamsburg. VA. Nov., 1989. pp. 95-104.

that operate over dynamic sets of objeMts implmnmt copy- 11. Brad A. Myers. Dario A. Giuse. Roger B. Dannenberg.
ing and intancing of sltrcnnred objects in prototype- Brad Vander Zanden. David S. Kosbie. Ed Pervmn Andrew
instance sys ir•, simfy the creation of prototype objects Mickisb, a Philippe Maxrc a. "Comprtbetive Suppon
from example objec)s in demonstrational systems, and for Graphical. Higly-inactive User Interfaces: The Gar-
zbstractly specify layouts. In addition. their pranming noe Usr Interface Development Environment". IEEE
style is simpler and more effective than conventional con- Computer 23.11 (Nov. 1990). 71-85.
Mints. they improve the efficiency of applications, and
they decrease an application's storage demands. Because 12Z Brad A. Myers Graphical Techniques in a Spread-
of their flexibility and ease of use. indirect eference con- sheet for Specifying User Interfaces. Human Factors ui
smraits have permitted a comprehensive usa" interface Computing Systems. Proceedings SIGCHI'91, New Or-
toolkit to be built for the first time on top of a constaint leans. LA, April, 1991. pp. 243-249.
system This represents an important step towanr the
development of a general-purpose, conswaint-based, inter- 13 T. Reps. T. Teitelbaum, and A. Demers. 'Incremental
active programming language Coatext-Dependent Analysis for Language-Based Editors".
Refprences ACM4 TOPLAS5. 3 (July 1983). 449-477.

14. V. A. Saawalt. Concurrenr Constraint Programming
1. Paul Barth. -An OjectOriend Approach to Graphi- Languages. Ph.D. Tbl. School of Computer Science.
cal Interfaces". ACM Transactions on Graphics 5. 2 (April CMU. Pittsburgh. PA. 1989.
1986), 142-172.
2. AlanBorning and Rotiez¶ D r "Conisa-Based 15. Guy L Steele. Jr. The Definition and Implemeraation
Tools Afo Building UsoerIntDerfac". ACM ansain-Bs o ofA Computer Programming Language based on
Tools for Building Usr Interaces". ACM Tran3action7 on Constraints. Ph.D. Th.. Department of Computer Science.
Graphics 5, 4 (Oct. 1986). 3-74 MIT, Boston. MA, 1980.

3. Bjorn N. Freeman-Benson. Kaleidoscope: Mixing Oh- 16. Ivan . Sutherland. SkemchPad A Man-Machine
jects, Constraints. and Imperative Programming. Graphical Comwnicatu n System. AFIPS Spring Joint
OOPSLA/ECOOP'90 Coafemce Prceedings, 1990, PP. Computer Conferece, 1963. pp. 329-346.
77-88.

17. Pedro A. Szekely and Brad A. Myers. "A User Inter-
4. R. Hoover. noempuntal Graph Evaluanion. Ph.D. TUr , face Toolkit Based on Graphical Objects and Constraints".
Department of Compute Science, Conell University. Sigplan Notices 23. 11 (Nov. 1988), 36-45. ACM Con-
Ithaca, NY. 1987. ference on Object-Oriented Progrannming; Systems Lan-

5. Scott E. Hudson. Graphical Specification of Flexible guages and Applications: OOPSLA'88.
User Interface Displays. ACM SIGGRAPH Symposium I& Pedro Szekely. Template-Based Mapping of Applica-
on User Interface Software and Technology, Proceedings tion Data to Interactive Displays. ACM SIGGRAPH Sym-
UIST`89, Williamsburg. VA. Nov., 1989, pp. 105-114. posium on User Interface Software and Technology.

6. Scott E. Hudson. Incremental Attribute Evaluation: A Proceedings UIST'90. Snowbird. Utah. Oct., 1990, pp. 1-9
Fle?6ble Algorithm for Lazy Update. Tech. RepL 19. Brad T. Vander Zanden. Constraint Grammars-A
17189-12, The University of Arizona. 1989. New Model for Specifying Graphical Applications.

7. Scott E. Hudson. An Enhanced Spreadsheet Model for Human Factors in Computing Systems. Proceedings
User Interface Specification. Tech. Rept. TR90-33, The SIGCHT'89. Austin, TX. Ap".i, 1989. pp. 325-330.
University of Arizona. 1990. 20. Brad Vander Zanden and Brad A. Myers. Autornauc.

8. 1. Jaffar and J. Lassez. Con"raint Logic, Programming. Look-and-Feel Independent Dialog Creation for Graphical
Proceedings of the Principles of Programming Languages User Interfaces. Human Factors in Computing Systems.
Conference, ACM, Munich, Germany, Jan., 1987, pp. Proceedings SIGCH'90, Seattle. WA, April. 1990. pp.
111-119. 27-34.

164 UIST'91 Hilton Head, South Carolina

27 - Second Garnet Compendium

Reprinted from Proceedings OOPSLA' 92: ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, October 18-22. 1992.

Vancouver, BC, Canada. SIGPL.AN Notices, vol. 27, no. 10. pp. 184-200.

DECLARATIVE PROGRAMMING IN A
PROTOTYPE-INSTANCE SYSTEM:

OBJECT-ORIENTED PROGRAMMING WITHOUT
WRITING METHODS

Brad A. Myers Dario A. Giuse Brad Vander Zanden

School of Computer Science School of Computer Science Computer Science Department
Carnegie Mellon University Carnegie Mellon University University of Tennessee

5000 Forbes Avenue 5000 Forbes Avenue 107 Ayres Hall
Pittsburgh, PA 15213 Pittsburgh. PA 15213 Knoxville, TN 37996-.301

bam@cs.aiu.edu dzg@cs.cmu.edu bvz@cs.utk.edu

ABSTRACT 1. Introduction
Most programming in the Garnet system uses a Over the last three years of using the Garnet system to
declarative style that eliminates the need to write new
methods. One implication is that the interface to ob-
jects is typically through their data values. This con. observed that the style of programming in Garnet is
trasts significanly with other object systems where quite different from that in conventional object-
writing methods is the central mechanism of program- oriented systems. In Garnet. programmers combine
ming. Four features are combined in a unique way in pre-defined objects into collections, use constraints to
Garnet to make Nhis possible: the use of a prototype- define the relationships among them, and then attach
instance object system with structural inheritance. a pre-defined "Interactor" objects to cause the objects
retained-object model where most objects persist. the
use of constraints to tie the objects together, and a to respond to input. The result is a declarative style of
new input model that makes writing event handlers programming where the programmer rarely writes
unnecessary. The result is that code is easier to write methods. Furthermore, the interface to objects is
for programmers, and also easier for tools, such as in- usually through direct accessing and setting of data
teractive. direct manipulation interface builders, to values, rather than through methods.
generate.

The features of the Garnet object system have been
KEYWORDS: Object-Oriented Programming, motivated by the overall goal of the project: to
Prototype-lnstance Model, Toolkits, Declarative Pro- provide high-level, interactive, mouse-based tools for
gramnming, Consrraints. Input, Garnet. rapidly prototyping and creating graphical, highly-

interactive, direct manipulation programs. Because of
the emphasis on rapid creation and easy editing. we
have chosen to make the object system completely
flexible and dynamic. Since the interactive tools need
to be able to generate code for the interface and then

Permussion to copy' without fee an1 or part of this materia is read the code for later editing, it is easier to generate
granted preovied that the copies arnot tade or disribuied for high-level, declarative specifications. Because much
direct commerciul advantage, the ACM copyright notice and the of the look and the dynamic behavior in Garnet .;an be
bile of the publication and its date sppeer. and notice is given
that copying is by permission of the Association for Computing specified by supplying parameters to pre-defined ob-
Mc•tnet'y. To copy otherwise, or to republish, requires fee jects, it is easier for interactive tools to display these
and/or specific prthis.-en, options in dialog boxes or intelligently guess them

11S92 ACM 0-a9751-5395-fJ2/0010i0184...$1.50 using demonstrational techniques.

OOlPSLA'92, pp. 184-200

Declarative Proyamming in a Prototype-lnstance System -.28

In order to achieve these goals, we have made a num- This paper discusses these aspects of Garnet. and
ber of interesting design decisions which contribute to shows the advantages of the Garnet style of program.
Garnet's unique programming style. First. Garnet ming. Even though conventional wisdom for object-
uses a prototype-instance model rather than the more oriented programming is that writing methods is
popular class-instance model. In a prototype-instance "good" and exposing the objects' data is 'bad," we
model, there is no distinction between instances and show that the Garnet style is just as modular and
classes; any instance can serve as a "prototype" for provides just as much information hiding. Further-
other instances. Garnet's model is unique in that it more, there is some evidence that, at least for user
supports strucural-inheritance. This means that when interface programming, it is more effective.
a prototype object is a collection (or "aggregate") of
other objects, Garnet creates instances of all com- Garnet is a comprehensive user interface development
ponents when the aggregate is instanced. Therefore, environment in Lisp for X/11.1 It is in the public
the programmer can construct complex graphical oh- domain and is freely available. Currently, over 30
jects by declaratively listing the primitive component projects around the world are using the system
objects. It is not necessary to write creation or draw- regularly.2 The system contains a number of features
ing methods. that make it well-suited for creating graphical user in-

terfaces. Unlike other toolkits which primarily supply
Second, the objects in Garnet are usually persistent widgets, Garnet is specifically designed to cover all
and long-term. For example, the graphics model re- aspects of user interface programming, especially the
quires that there be an object in memory correspond- insides of application windows. While them have
ing to each object on the screen. This means that the been a number of papers about Garnet [17] and its
programmer does not bave to deal with object refresh, components [23. 15, 24, 19], this is the first paper
and allows the toolkit to contain high-level support, about the programming style. For a complete discus-
like selection handles. In many other systems, a sion of programming in Garnet, see the reference
single object can be used like a scamp-pad and drawn manual [20).
in multiple places on the screen.

2. Related Work
Third, constraints can be used to declare the relation- In the terms of the "Treaty of Orlando" [22], the
ships among the objects. Constraints in Garnet are Garnet object system is a prototype-instance model
tightly integrated with the object system. so that any with dynamic, implicit, per-object sharing. It is
slot of any object can have a constraint which cal- dynamic because the inheritance can be changed at
culates its value. The result is that the interface to any time, implicit because objects inherit from their
objccts is usually through data values which arc prototypes and you cannot explicitly declare how
directly accessed and set, rather than through slots are inherited (except by using constraints), and
methods. Constraints Arc used to propagate the per-object because there is no such thing as classes.
changes appropriately. The "templates" (prototypes) arm entirely "non-

strict," which means that an instance can gain or loseFourth, Garnet incorporates a novel input model, slt

which provides standard objects called "Interactors" at any time. These features make Garnet much
like SELF [5] and other prototype-instance systems

to handle the most popular direct manipulation be- 1 However, unlike SELF. Garnet rarely uses mul-
haviors. This is based on the Model-View-Controller tiple inheritance (although it is allowed), and we have
idea from Smalltalk [81. where the Interactors cor-
respond to the controllers. In Garnet, however, unlike
in Smallcalk and other implementations of this idea,

the programmer rarely writes new Interactor methods. 'Di PbsLscript and Macintosh versions ar in progess.
Instead, the programmer attaches an instance of a pre-
existing Interactor object to the graphical objects 2You ca= get Garnet by anonymous FTP fromusing -constraints. and declaratively specifies any a 9.p. ca. cmu. edu. Change t the drectory

/ usr/ garner. /garnet./ (note the double ga rne r.'s) and

necessary controlling parameters for the Interactor. retrieve REAOME for in•tmrucons. Or you can send electronic
mail to garnet@c .cmu. edu.

185

29-
Second Garnet Compendium

object system. Another important difference is that tional constraints. Coral had a special-purpose
Garnet encourages programmers to directly access mechanism for constraints over lists of objects, such
and set slots of objects. whereas SELF prevents this as the items of a menu. For example, you could

and only provides methods. specify a constraint for the top of the first item and a
different constraint for the rest of the items. This is

Many systems have used constraints as part of an ob- not needed in Garnet due to the support for arbitrary
jcct system (31, but none is as general-purpose or code in constraints (you can just use Lisp's looping
fufly-integrated as Garnet. Garnet is also the first sys- facilities). The create routines in Coral were specific
tern to introduce pointer variables into constraints to each class, rather than a generic function td•t
(where the objects referenced by the constraint can would work for all classes. Other important problems
change). The first integrated constraint and object with Coral were that the declarative technique did not

system was ThingLab [2], which supported multi-way support changing objects after they were created, and

constraints. ThingLab was also a prototype-instance it was not available to interactive editors. Therefore,
object system. Apogee [7] and Grow [II are more a separate procedural mechanism was supplied. In the
closely related to Garnet in goals, since they are user current Garnet, the declarative and procedural

interface toolkits. Also, like Garnet, they implement mechanisms have equivalent power.

one-way constraints. Neither, however, uses con-
straints as the primary mechanism for information 3. The Prototype-Instance Object
passing, so they both make extensive use of methods. Model

The Garnet object system implements the prototype-
As was mentioned, Garner's inputfmodel isbased on instance model (91, and supports completely dynamic
the Model-View-Controuer idea from Smace talkv 8]. redefinition of prototypes with automatic change
Other attempts to capture interactive behaviors in- poaain hr sn itnto ewe n

clude the model used by graphics standards, such as propaand clases ny istanceicn see as-
stances and classes; any instance can serve as a

PHIGS, OKS, C . CORE. etc., which identifies five ."prototype" for other instances. All data and

or six basic input types (e.g., locator, stroke, valuator, methods are stored in "slots" (sometimes called
choice, pick and string for PHIGS). This is based on "fields" or "instance variables"). An instance can
a model by Foley and Wallace (6). Unfortunately, add any number of new slots, and slots that are not

this model has proven unusable for modem user inter- overridden in an instance inherit the values from its
faces [12]. prototype. In fact, the inheritance can change

The current object and constraint system is a complete dynamically, as an object can add or remove slots at

redesign and rewrite of the Coral system [23]. Coral any time. There is no distinction between data and

was implemented in CLOS, but was abandoned be- method slots. Any slot can hold any type of value,

cause it was too slow and inflexible in practice. Like and in Common Lisp, a function is just a type of

Garnet, Coral provided a declarative syntax for ob- value. This allows the methods that implement mes-

jects and constraints, but it was not possible to modify sages to change dynamically, which is not possible in

objects once they had been created. Coral used a con- conventional object systems like Smalltalk. The

venuional class-instance model, rather than the ability to dynamically add, delete, and modify
methods has proven important in graphical interfaceprototype-instance model we now use. It also re-

quired that the constraints be parsed to search for ob- builders since they need to temporarily insert their

ject references, which limited the kinds of constraints own methods during "build" mode, and then retract

that could be written. The current Garnet constraint them during "test" mode.

system does not need to parse constraints because it All objects are created with the standard function
dynamically determines the dependencies when the create-instance which takes an optional name
constraint is evaluated. Coral did not provide for ar- of the new object, an optional object to be used as a
bitrary pointer variables in constraints like Garnet prototype, and a list of slots and values that should
does now, and it used active values, which we have have local values. Slots that are not mentioned start
found to be unnecessary in Garnet with fully func- out using the inherited, default value from the

186

Declarative Procrammine ina Prototyve-Instaitce System .30

prototype (which can be changed l ater). Slot names _____________________

start with colons, and can contain any number of
printable characters (e.g., :left, :interim- '

selected, :obj-over). In the following ex- -t
ample. the rectangle namned my-rect will inherit the
:top, :width, and :height fronithe prototypet
rectangle: ;z~

(create-in tance rectangle NIL ';s~
(:top 10) (:left 10) ;Spec*jiVdSAufsow slzots.
(:width 201 (:heigqht 25) (:color black))

1cteatst-inscance my-rect rectangle icreateins-1¶ance 'buttion aggregate

Setting an object's slot with a value automatically ((:rop-*dqe rectangle .. .4 ;whJEae k A tp adre

crezs th slo. i neeed. bis ake it xtreely(:fill-inside rectangle ...) ; grey intrbor

eay to associate any piece of information with any (:label tet... ;string msiudi butio

object. since slot names do not have to be predefined. 1srn LblH
(critate-instance 'my-but~totn1 buttonFor example, the following will create a new slot in (:lift 100i (-top 51 (-.string IFrst")I)

rectangle: (creatt-instancii 'my-buttonZ button
(:left 100) (:top 35) (:strinq 'Second,))

(s-valuo rectangle :perimeter 90) (creatt-instance 'my-button3 button

Because my-rect inherits from rectangle, it will (:leftt 100) (top 6S) (:strinq 'Third'))

also now have the new slot. I(b)
Figure 1:

There is a special kind of object in Garnet called an (a) A button (shiown on the left)'and some imstances created
"* aggregate" which is a collection of other objects. A from it. (b) Th, outline of the button's aggregate Structure

and the code to create the insunces.
unique feature of Garnet is that whenever an instance
is made of an aggregate, Garnet automatically creates
instances of all its components, and uinkcs thiem were changed in button, it would automatically also
together appropriately, This -structural inheritance" change in my-buttoni and all the other instances
is an extremely powerful abstraction, because it frees (see Figure 2). More significantly, if a part is added
the user from having to know whether an object being or removed from the prototype, then Garnet will add
instanced is a primitive object like rectangle or a or remove the corresponding object from all in-
composite like button; the create-instance call is the stances. For example if top-edge was removed
same. from button, then the appropriate rectangle would

also be removed from my-buttoril and the other
For example, a button might be composed of three instances. Garnet stores pointers in each prototype to
rectangles and a text object. T"he programmer can aU instances to support these operations.
declaratively list these as part of a button, as shown in Smlry fteporme at ocet nojc
Figure 1. Then, when the user creates my-button Shimhiarslyifhth progrfiammer wfant toeaiteing object.i
using button as the prototype, Garnet automatically wihi lgtmdfcto fa xsigojc.i
creates instances of the three rectangles and the text- is only necessary to override the divergent parts. For
Of course, any of the parts could themselves be ag- example, the programmer could have left the eXISting

gregates, and the instancing would be applied recur- button prototype of Figure I unmodified. and

sively. Constraints (described below) are used to created a new type of button that looks like Figure 2
declare how the properties of the components are con- by specifying:

(create-instanco 'new-burton button
nected. (:paris

((:toP-edqe :Omlit) ;dae.'l i WORNA top-ddg rectangle.

An important innovation in Garnet is that edits made :fillI-inside :modify
;uue, chawn e OWfilling -wjyie propery.

to the prototype are automatically reflected in all in- i~fi11inq-styl* light-gray))
)- 4091a"o.sego eoabe tuare era wcaiaad.

stances. For example, if the color off fill- insideM

187

31-
Second Garnet Compendium

the appropriate parameters. Note that unlike other in-
teractive interface builders, such as the NeXT Inter-

V13 T; face Builder, Lapidary allows the designer to define
entirely new objects. not just choose pre-defined ob-
jects from a palette. The various features of Gamet's

t secon :' object system make this much easier to implement
- [21].

:::. Since edits to a prototype ame reflected in its instances,
it is even possible to interactively change the ap-

Figure 2: pearance of objects waile they are being used in an
When the colWr of the fill-inside rectangle is changed application. When Lapidary or a similar tool changes
to light-pray and the top-edqe rectangle is removed from
d, biae prowoe in Figure 1. these changes propagais the prototype, all of the instances are updated im-
mmaadayte instance, mediatell, even if they appear inside of an application

that is currently running. This helps achieve the goal

In a conventional object system, the programmer of making Garnet useful for rapid proztoyping of in-

would instead be required to rewrie the entire draw terfaces, since the designer can see the results of the

method (and probably the erase and many other edits in context. In a class-instance model or any

methods as well). In Garnet. only the specific pans to method-based object system, it would usually be

be ctaged need to be mentoned, and only In the ob- necessary to stop and recomptle to see the results of

ject definition. edits.

A very significant advantage of dtis technique is that One claimed disadvantage of the prototype-instance

it is possible to provide graphical, interactive tools model is speed, since every slot access and setting

that will crate the graphical objects. For example might require a search up the inheritance hierarchy to
Lapidary [15] allows prgrammen to draw pictures of find the slot. However, through implementation tech-new widgets (like the butonm above) and of i ew niques such as caching, we have significantly im-

application-specific prototypes. The interface of proved the perfodnance of Garnet. Thus, even though
Lapidary is much like a conventional drawing Garnet otfers dynamic inhetance, constraints, and
program like MacDraw. The programmer can specify automatic constraim elimination (explained below), it
which slots will be parameters (for the button, they only takes 17.9 microseconds to access a slot (on a
might be the position and string). Interactive be. SPARCStation 1, using Allegro Common Lisp
haviors and relationships among the components can
also be defined. Because all objects have the same 4 Retained Objects
structure, Garnet provides a built-in routine that will

save the objects to a file [21]. The contents of the file Another important feature of Garnet's object system

is simply the declarative code to create the objects, a is that most objects are "long-tern.' Unlike other

in Figure 1-b. Therefore, this file can be compiled object systems, it is rare in Garnet to repeatedly al-

using the standlard Lisp compiler, and the standard locate and dispose of objects. Most objects are used

Lisp ltoad routine is all that is needed to read in the to represent application information. graphical dis-

objects. plays, or interactive behaviors which persist.

Therefore, Lapidary can simply call the standard save For example, all graphics use a "retained-object

routine to write the created objects to a file, instead of model" (sometimes called "structured graphics" or a

having to generate code for the methods to create, "display fist"). This means that for every graphical

draw, and erase the objects, and for handling input object on the screr.n, there is a corresponding object in

events. When the application wants these graphical memory. Therefore, to make something appear on the

objects to appear at run-time, it only needs to load the screen, the programmer creates instances of graphical

file, and create instances of the prototypes supplying objects and adds them to a window. A significant

188

Declarative Proamming in a Prototype-Instance System -32

difference from other systems that supply suctured complex application-specific graphical object is
graphics, such as CLIM [Ill and InterViews [101 is desired, the programmer uses the declarative syntax to
that there is no way to avoid using the structured list all the component pars, and then creates instances
graphics in Garnet aU graphics must be displayed by and adds them to the appropriate window. Of course.
attaching inn of objects to windows, the prototypes themselves can also be. created

dynamically at rnm time. When objects are to be
As an example, to display my-buttonl or changed, Garnet automatically determines what must

.my -:ect. the programmer can create an instance of be redrawn. Using the same mechanism, Garnet
a window and add these objects: handles window scrolling and refresh automatically.

ICr*ze-instance my-wLnd@ow windo)
(,add-caplflefttS .y-q•,ndow uy-buLr.on1 .y-•ucz;)This will cause the objecas to be displayed. Of course, the primitive graphical objects, such as

ProToypes can also be displaydy since there is no dis rectangles, lines and text, use draw methods intemally
Pnctonybetween plotbotyps and instances. Therefore, to disp.y themselves on the screen. Other internal
thebuton bethaenprototysays and instagnes. Therefore. methods are used for handling refresh and for askingthe button tha t says "L a bl• " in Figure I is the actual ob e t wh h rt ey a un rt e m us . H ev ,pin~ypefor he nstnces obectswheherthey are under the mouse. However,
prototype for de instances. since Gamet supplies a primitive object for each kind

In a similar way. Imeractor objects which control be- of drawing operation in the X Window System, any-

haviors (described below) am also allocated and at- thing dia can be drawn in X can be created by com-

tached to graphics. Furthermore, the data that bining instances of Garnet's graphical objects. There-

describe the information and state of the application fore, the programmer can simply combine the built-in

me often stored as Garne objects. Thus. our tech- graphical objects, and never needs to write new

niques are not just limited to the graphical user inter- methods.

face put of the applicadion. Another important advantage of the retained model is

In order to change any property of an object, it is only that the toolkit can provide built-in utilities for many

necessary to set the appropriate slot, and Garnet will of the common functions, since all data uses a stan-

propagate the change appropriately. For example, to dard structure. For example, Garnet provides a

change the sting of my-buttonil, you could use: widget which displays the popular square "handles"
(s-value my-button1 :s•ring 'Now Label) around graphical objects for selection, moving, and

This is implemented using a special demon procedure growing them. This works because the handles can
that can be associated with each object. This demon reference the retained graphical objects to know what
will be called whenever any slots of the object is on the screen, and how to modify them. Similarly,
change. For graphical objects in Garnet, a built-in there am built-in routines for creating, duplicating,
demon is used which automatically insures that the deleting, moving, growing, and printing objects.
appropriate graphical objects on the screen are Thus, application developers do not need to write
redrawn. The graphical update algorithm anempts to code for any of this.
minimize the number of objects that are redrawn by
firs determining all objects that change and all ob- The ptimary problem with the retained object model

jects that intersect them, and then drawing only those is the potential for enormous space inefficiencies. If

objects (from back to front) using an appropriate clip- there are 10,000 objects on the screen, there must be

ping region. A different demon is used for Interactor 10,000 objects in memory to represent them. We

objects, and applicanons can supply their own have taken a nber of steps to overcome this

demons for application-specific objects. if necessary. problem. As with the Glyphs in InterViews [4], we
remove unmeeded information from objects. For ex-

The advantage of the retained-object model is that ample, we can remove large numbers of unnecessary
programmers are freed from many of the maintenance constraints (see below). However, unlike Glyphs.
tasks they would have in most other systems. There each object in Garnet still keeps information about
is never a need to write or call create, in- where it is located on the screen. Second. if there are
itialize, draw, or erase methods. When a a large number of nearly identical objects, suctr as the

189

33 - Second Garnet Compendium

squares in a bitmap editor ("far bits"), the lines in a (cgv object slot), where gv stands for "get-
map or mesh (Figure 3), or the dots in a graph, then a value."
"virtual aggregte" can be used that just pretends to
create an object for each graphic. The programmer Although many other research systems have provided
provides a prototype object, and the virtual aggregate constraints, Garnet is the first to truly integrate thdm
simulaes creaing an instance for each data value, but with the object system and to make them general pur-
actually does not allocate any objects in memor,". It pose. Constraints in Garnet can be any Lisp expres-
still appeam to the rest of the code, howeve ta sion. An important result of these design decisions is
thene is an object for each value. Using these tech. that constraints are used throughout the system in
niques, people have created quite large applications many different ways. For example, Garnet's im-
using Garnet. plementation of a Motif radio button widget uses 58

constraints internally, and the Lapidary graphical
editor, which is a large and complex application, con-
rains 16,700 constraints. Of course, many of these are
only evaluated once, and may be eliminated, as will

le. P -be discussed later.

Since they can contain arbitrary code, constraints
might be thought to be !ike methods, and, in fact, they
serve a similar purpose: to define the operation of ob-
jects. However, the important point is that program-
ming with constraints is a different style than pro-
gramming with methods, in the same way that pro-

W ~gramming with methods is a different style than con-
venuonal procedural programming. For one thing,

________ -. constraints am automatically evaluated when neces-
S, sary, rather than requiring the programmer to invoke

-i• them at appropriate times. Secondly, constraints are

Figure 3: declarative, in that they compute the values of vari-
A mesh cratd using a virtual aggregate for ft polygons ables (slots) based on values of other variables, and
and another virtual aggregate for the square knobs. For the do not have side effects. Finally, by focusing on data
polygons, dte virtual aggregate is passed a rxotoype for a values, constraints make programming more data
polygon, and an array containing the list of points and the
color for each polygon. The virtual aggregate en oriented rather than procedure oriented. Section 8
to allocate an object for each element of the array, but discusses why constraints provide more information
actually just draws the prototype object repeatedly. (Pic- hiding than conventional methods.
tme courtesy of Kenneth Melmer of General Electric
[131.) One obvious use of constraints is to tie pans of com-

posite objects together. When the programmer col-

5. Constraints lects together a set of objects to make a composite. it
is necessary to specify how the parts relate. GarnetAn important feature of Garnet is that any slot of any provides a declarative syntax so the programmer can

object can contain a corelrain: instead of a normal simply list the relationships of the parts. An innova-
value. A constraint is a relationship that is declared tion of the Garnet constraint system is that the objects
once and then maintained automatically by the sys- can be referenced through pointer variables (251. This
tern. For example, instead of making one endpoint of is used to allow the code of the constraint to be inde-
a line be (10,45), a programmer can define it to be . pendent of the specific objects used for the pans. In-
same as the center of the left edge of a rectangle. Stead, the constraint will reference the object using a
Then the system will change the value of the endpoint "path" through the aggregate hierarchy. For ex-
automatically whenever the rectangle moves. The ample, in the button of Figure 1. the bottom-edge
syntax for referencing slots of objects in Garnet is

190

Declamtive Programming in a Prototype-Instance System -34

rectangle can refer to the width of the text object

using:
19V :SELW :parent :label ;width)

As shown in Figure 4-a, this starts from thel
bottom-edge rectangle, goes up to the parent ag-
gregate, down to the label part, and gets the
:width from there. Thus. the width of the

bottom-edge will be the same as the width of the
label. This will work in the prototype, as well as in
all instance& since Gamet sets pointers to the ap- (a)
propriae objects into the slots :parent, :fill-
inside, :bottom-edge, etc. This makes it easy (create-instance 'button aggregate

t;left 20) Tha.ware hW
for Garnet to create instances of the endre aggregate Otop 20) Psrams to
(including the constraints), since Gamet does not need -string "label") At bua•

O parts

to edit the constrair- code. Because this style of con- (:t op-edge rectangle
straint is quite common, we provide an abbreviation (:left (formula (qvl :parent :left)))

(:top (formula (gvl :parent :top);)

of (gv :SELF) as gvl. Figure 4-b shows the con- (:width (formula
(* (qvl :parent :label :width) 9M

strains used to tie together the parts of the button of (:height (formula
(F (gvl :parent :label :height) 8))Ri gU ml 1. (: C. o or white))

€:bottom-edge rectangle

These constraints am fairly simple, and are repre- O:l.ft (formula (+ 2 (qvl parent :left))))
f:rop (formula (+ 2 (qvIl :parent :top))))

sentazive of the majority of the constraints used in (;width (formula
n 6 (gvl :patent :label ;width))))

Garnet However, some objects have quite long and (:height (formula

complex constraints. Forexample, theaggregraph o" 6 1E V :£Prnt :label :height))))
t:color black))

object is a special type of aggregate that displays its t:fizll-insid rectangle

components as a tree or graph, and it has a very large (:left Lformula
(qvl :parent :bottom-.dqe :left)))

constraint that computes the graph layout information. (:Oop (formula
(qvl :parent :bottom-edqe :top)))

(:width (formula

Another important use of constraints is to copy values (- (qvl :parent :bottom-edqe :width) 2)))
and parameters around. For example, the Motif bar- ~ (height (formula

(- (qvl :parent :bottom-edqe :height) 2)M)

ton prototype takes the string label, the color, and the :color gray))
p(:label text

position as parameters (among others). These :eft (formula
parameters are supplied as values in the slots of the ,(centar-x (gvl :parent :fill-inside))))

(:top (formula
top-level widget aggregate. When the object is (center-y (gvl :parent :fill-inside*)'1

created, the programmer can specify whichever slots (:string (formula (qvl :parent :stritng)))fl))

need different values and the rest are inherited. Of (b)

course, any value can be changed later while the Figure 4:
widget is displayed, if desired. Note that this is quite (a) The structure of the objects in the button of Figure I

different from a conventional system that requires the showing the references. (b) The complete code used to
produce the button. This shows the consuraints which put

widget creation method to take a large parameter list the graphics in the correct places and copy the parameter
with all possible values to be set, and therefore re- values to the parts.
quires a custom creation method for each object. In

Garnet. the standard create-instance routine is appropriate places in the components. For example.
used for all objects. and it can be used to set an ar- the string value is specified at the top level in Figures
bitrary number of slots. I and 4-b, but it is needed by the text object. So there

Although the slots which serve as parameters are in is a constraint in the text object that copies the value

the top-level button aggregate, for these values to ac- of the parameter. Of course, since constraints can be

tually take effect they must be copicd down to the arbitrary Usp code, the values can be transformed ar-
bitrarily as needed. Since constraints are used to

191

351- Second Gamet Compendium

propagate the values, the objects do not have to do Box co,,t,,i,, Men,
anything special to allow changes at run-time: if one :eft'la
of the parameter sloM is changed, dhe constraints

autOnatically propagate the change appropriately, and
the update algorithm will make sue the object is then
redrawn.

An interesting observation about this use of con-
straints is that it allows arbitoary delegation of values,
not just from prototypes. Any slot can get its value
from any slot of any other object through constraints.
Therefore, the constraints can be used as a form of
inheritance. Of course, constraints are more powerful .'i ' :hisb1"M.
than convenitionial inheritance since they can perform SmI.r) isawwEI
arbitrary transfrmations on the values.

As with the graphical objects themselves, conswaincs
can be defined interactively using various editors.
Lapidary provides some iconic menus for defining the Cnting Menu
most popular Constraints (Figure 5). We have found
that tese are sufficient for most graphical applica-
tons. For mome complex constraints. a spreadsheet-
like interface, which is called C32, provides a number
of features to help programmers who do not know the
exact syntax (19]. For example, C32 has menus thct
will insert commonly used functions. Also, the us: ,
can point to objects with the mouse and C32 will in-
sert a reference into the constraint using the correct

path expression. Of course. it also balances paren-
theses. In the furore, we will explore automnatic in-
ferencing of constraints, as was done in Peridot [14].
We envision that when "guessing" mode is turned • - ,i-]
on, the system will try to find a likely constraint be- G E]
tween the newly drawn object and the neighboring [[
objects. _,_

The performance of constraints in Garnet is quite fasL Figure S:
Evaluating constraints is not much slower than the The dialog boxes from Lapidary (151 that allow the most

u have to p common constaints to be set. The menu on the top is for
calculations the programmer would ha simperform rectangular objects (which includes circles and aggregates),anyway. On a Sun SPARCstation I, a simple co,- and the one on the bouom is for attaching lines to each
straint evaluation (in Lisp) takes I 10 microseconds, other or to rectangular objects. For the box constraints, the
This means that objects tracking the mouse can afford column of buttons labeled :top will cause the dependent

to have dozens of constrains being re-evaluated for object to be: on top of the other object. just inside the other
object, centered vertically in the object, just above the other

each incremental mouse movement The system object, or just below the other object. Similarly, the row of
caches old values for constraints, so ones that do not buttons labeled :left determine the horizontal relationship.
change value are not re-evaluated. We have dis- The button on the bottom constrains the width, and the one

on the right constrains the height. The text fields, like
covered that the primary performance problem with offset and scale are used to supply parameters to the
constraints is not speed, but rather space. For each constraints. For lines, either end of the line can be attached
constraint there must be pointers from slots that are to various positions of a box-like object or of another line.

192

DecLative PmMrming in a Prototype-Instance System - 36

referenced to the constraints that use them, and from and are purely input filters.3 The seven types of Inter-
constraints to the slots they reference. We observed actors currently in Garnet are:
that many of the constraints am only used once when

we devised a tech- Menu-Interactor - Used to select one or more
the object is initially placed, wfrom a set of objects. This can be used for menus,
nique where no memory is allocated for these con- radio buttons, check boxes, simple push buttons,
straints. This has been enormously effective, and and the arrows on scroll bars. In addition, this
decreases the total nm-time storage requirements of can be used to cause application objects to be-
applications on average by about 50%. For some come selected in a graphics editor.

dialog boxes, like the color selection palette, 1500 Move-Grow-Interactor - This is usedto move
Qonstraints are reduced to only 100. As an example an object or one of a set of objects using the
of a large scale application. 6690 constraints (which is mouse. There may be feedback to show where
over 40%) ah eliminated from the Lapidary graphical fe object will be moved, or the object itself may
editor. move with the mouse. This Interactor can be used

to implement the indicator for one-dimensional or
two-dimensional scroll bars, and also for moving

The use of constraints provides the programmer with application objects in a graphics editor.
a number of important benefits. The most obvious is New-Point-Interactor - This is used when
that the system maintains the relationships among ob- one, two or an arbitrary number of new points am
jects that otherwise would be the responsibility of the desired from the mouse.
programmer. More relevant to this paper, however, is Angle-mteractor - This is used to get the angle
that constraints allow objects to provide an abstract the mouse moves around some point It can be
interface through top-level variables, and the used for circular gauges or for rotating objects.
programmer can declaratively specify how to trans. Trace-Innteractor - This is used to get all of the
form the values for all components. In fact, itf you points fhe mouse goes through between start and
need to use methods, consraints can even be used to end events, for use in free-hand drawing.
dynamically determine which method to use for a Text-String-Interactor - This is used to edit
message based on the current state. This works be- text and supports single-line, or multi-line and
cause the value of any slot can be computed using a multi-font strings. A key translation table allows
constraint, and the value returned can be a function, arbitrary mappings of editing operations.

However, we do not know of ahyone using this fea- Gesture-Interactor - This supports freehand
tumr. gesturing, like drawing an "X" on top of an object

to delete it.

6. Input Model Unlike other implementations of the Model-View-
Virtually all toolkits, graphics packages, and window Controller idea, in Garnet the programmer never
managers use the same input model: a stream of input needs to create new kinds of "controllers." It is only

event records is sent to the appropriate window. The necessary to create an instance of a pre-defined Inter-

application program is expected to de-queue these actor and to supply a few parameters. An important
events and interpret them. Garnet uses an entirely dif- reason that this works is that we have carefully

ferent mudel, based on encapsulating input behaviors chosen the parameters so that they support the full

separately from the graphics [16, 18]. This handles range of direct manipulation interfaces. For example,

all input so objects never need event-handling the designer can specify which mouse button or

methods. keyboard key causes the Interactor to start operating,
and which causes it to stop. Menu-interactors can be

Garnet provides seven basic "Inxeractor" objects that told whether single or multiple selections are desired.
handle all of the most common direct manipulation The most important parameters, however, are the
behaviors. The Interactor objects in Garnet are com-
pletely independent of any graphical representation.

Nate ihat this use of the term *Interacor'" is different from
some otler systems that use the tam for an etire widget
(graphics plus behaviors). In Garnet. Interu'ors have no
graphics. oniy behavior.

193

37- Second Garnet Compendium

graplucs that the [nteractors operate over. We have will cause the positon and SiZC to dpend on
observed that although direct manipulation interfaces whatever object is set into the : ob j-over SIOL For
vary widely in their "look," they are mostly identical example, the left formula might be (gvl. :obj-
in their -feel'" or behavior. Therefore, by separating over : left), which will make the feedback object
the behavior from the graphics, and including have the same left position as whatever object is
parameters for the most popular options, virtually all selected. Notice that the Interactor does not need to
behaviors can be provided without requiring new know whether the feedback object is a simple XOR
code. rectangle or an aggregate containing squares that

serve as selection handles.
For example, to create an interactor which moves
around any of the objects which ame components of an If there is no feedback object, then the
aggrgate called my-agg, the following is all that is menu-interactor sets the :selected slot of
needed: the object itself. There might be constraints that

(Creat -instance 'my-mover Move-Grow-Inreractor change position, color or font based on whether the
(:fMedback-obh my-feedoack-:ect)
(:start-where '0*:glment-of my-aqg)IU object is selected or not. For example, to implement a

The rest of the properties of my-move: will use the Motif-like pushed-in appearance for the burton of
default values (start on left button down, move the Figure 6. the color of the ; top-edge might be corn-
object rather tman grow it, etc.). After it is created. puted by the constraint:
my-mover will continuously watch for a mouse (If (9vl ;pa,€nt :,s.ict,•d

black dw•c•a
leftbutton pre= over any of the objects in my-agg. white) e s•e,•,e

When this happens. it will make the feedback object The formula on the :bottom-edge would be the
(my-feedback-rect) visible and begin moving it opposite, and the color of the f1l- inside would
to follow the mouse until the mouse button is choose between gray and dark-gray. Note that this is
released. At that point, the my-feedback-rect all performed without methods: the parameters to the
will become invisible and the actual object will be Interactors are values in slots, and the interface be-
moved. (If no feedback object had been supplied, tween the Interactors and the graphical objects is
then the element of my-agg would be directly through setting well-defined slots in the graphics.
dragged by the mouse.)

It is always legal in Garnet to set a slot's value (the
There is a standard protocol through which the Inter- slot does not have to be pre-defined). Therefore, if

actors interface to the graphical objects. The the programmer does not want anything to happen
move-grow-interactor sets the :box slot of when the object becomes selected, he or she can
objects, and the : le f t and : top slots would be tied simply not attach any constraints to the slots. There is
to the :box slot with constraints. This allows themi never a worry of a "Message-not-understood" -rror
to be arbitrary filtering without the Inceractor having as in a conventional class-instance system, where the
to know about it. To find which object is under the programmer would have to define an appropriate
mouse, the Interactor sends a message to the ag- method at the root class (e.g., object), to make sure
gregate. This will, in turn, send messages to each of that there would never be a run-time error if arbitrary
the components. However. the programmer never has objects could be selected.
to write methods for these, since all graphical objects
are created by combining the Garnet primitives which Since Interactors can be specified by filling in

supply the appropriate methods, parameters, it is easy to create them in interactive
editors. For example, Lapidary provides a dialog boK

The Menu-Interactor has two putocols: it can for each [nteractor type that allows graphics to be at-
take a separate feedback object as a parameter, or it tached and parameters to be set. This is how
will directly modify the object that becomes selected. Lapidary allows arbitrary behaviors to be connected
If there is a feedback object, then its :ob3-over to application-specific graphics interactively, without
slot is set to the object that becomes selected. The requiring the programmer to write code. Interactors
feedbac, object is expected to have constraints that can be added to aggregates, so the single

194

Declarative Programming in a Prototype-Instance System - 38

S. 3..
E .

The but of Figure I can be made to look like it moves in
3-D by changing the colors of the pans. The Inierator-
d6es not need to know how the button responds to becom-
mselected.

create-instance call will create tr'e graphics Figure 7:
and Interactors necessary for an object to behave cor- A simple editor. Box 3 has been selected by the user, and
rertly. the current line-style (shown on the left) is a thin fine.

W,, have found the Interactor model to be extremely

effective. This model makes it much easier to To implement this in Garnet. the programmer would
program direc manipulation interfaces. However, we first create prototypes for the two kinds of objects that
have found a few cases wher the built-in parameters can be created: an arrow, and an aggregate containing
are not sufficient. In this case. it is possible for the a rounded-rectanLjý and a text object. The aggregate
programmer to write methods to filter the data. Typi- will contain constraints that keep the text centered at
cally, thes are used when custom processing is the top of the rounded rectangle. Then, a main win-
needed when the Interactor starts, stops or aborts. dow would be created containing the buttons for
Even when this is required, however, the interface the delete and quit, and four line objects to serve as a
programmer sees is still higher-level than conven- palette. A rectangle would be added to show which
tional event-handling. Details are available elsewhere line style is selected, and a menu-interactor would be
[20]. attached to the four lines with the rectangle as the

feedback.
7. Example and Comparisons
To give an example of the style of programming in To allow new objects to be created, a New-Point-

Garnet. we will sketch the implementation of the toy Interactor would be added to the right pan of the

graphics editor in Figure 7 and compare it with the window which starts on the right button. A parameter

implementation in conventional object-oriented lan- to this interactor is the prototype from which in-

guages. Here, every time the user clicks with the stances will be created. Henm, this slot will contain an

right mouse button in the drawing window, a new box aggregate containing the prototype box and arrows.

and arrow is created using the current line style Formulas in the prototypes will cause the arrows to

(which is shown on the left). The arrows always go to have the appropriate end points and he string to have

the previously-created box. The user can click with the appropriate value.

thie left mouse button to select objects, and the To make the objects selectable. it Is only necessary to
handles appear. Dragging a handle moves or grows include the pre-defined selection-handle-
the selected object The Delete button deletes the widget. which displays the squares around the ob-
selected object, and pressing on a new line style while jects and allows objects to be resized and moved. In-
an object is selected causes the object to change. Of tenalloy this wiJget contains many formulas that
course, much of this program could be created using cause the squares to be attached to the objects at the
the Lapidary graphical editor without writing any appropriate places (it works for both boxes and lines).
code, but we will assume here that Lapidary is not The value of the selection-handle widgct is the
being used, and the programmer wants to write every- selected object. which will be accessed by the call-
thing by hand. back functions for changing the line-style and delete.

195

39- Second Garnet Compendium

To compare the implementations. we asked a number drawing objects. since they cannot be specified
of people to implement the same editor in different declaratively. How the rectangle the text is displayed

object systems and toolkits. Most of these people is hard-wired into the draw method of the box class,
were the designers of the toolkits, and thus it might be harder to modify than in Garnet.

especially by interactive programs. Because they do
One implementation was in GINA++, a research not have constraints, the cooe must explicitly redraw
toolkit in C++ from the German National Research the lines and the text label when the box is moved,
Center for Computer Science.4 The implementation whereas in Garnet this is handled automatically.
defines classes for the line-style palette items, for the
commands for creating and deleting objects, for the As a small measure of whether the Garnet technique
graphical objects, and for the editor and its panes. is more effective, Figure 8 shows the coding time and
Mithods on the graphical objects include setting and size information for seven implementations of the
accessing the "to" and "from" objects (for the ar- editor in Figure 7. All but the MacApp one was in-
rows), drawing, and drawing with dashed outline to plemented by ore of the designers of the toolkit, so
serve as a feedback object. Methods for the editor you can expect that they knew the systems well. The
include creating the windows, and accessing and set- MacApp implementor was also an expert with his sys-
ting the current line-style and the selected object. tern. Zdrava is an experimental, unfinished system,
GINA++ provides a retained-object model, so the so the times for it are simply estimates from the desig-
programmer does not need to write erase or redisplay ner. Of course, these numbers do not constitute a
methods. Support for selection handles around a rec- scientific study, and the other programmers did not
tangular object is built in, but the programmer over- know that they were participating in a time test. Fur-
rode the selection draw-method for lines to only show thenuore, the example was chosen by the Garnet
handles at the end points. To handle creating new designer. Still, the data does suggest that graphical
objects, when GINA++ sends the buttonypress programs can be smaller and written faster in GaMer.
message to the background window, the CreateBox
object is created. This special command object
defines methods to handle the incremental feedback
when dragging out a new box, and then creating a System Language Time Lines of Code

new rounded-rectangle and a new arrow when the Gate Commo Lisp 2.5 hrs 183 lines

mouse button is released. CLBM+Zdwa Cmmon Lisp 2.5 h (es41) 190 (eat.)
CLIM Commo is 4.5 hbr 331 lines

CLIM [111 is a popular commercial Lisp toolkit that MwAp Object Pascal 9 h 1026 lines

uses CLOS, the standard Common Lisp object sys- GINA++ C-+ 16 horns 550 lines
LispView Common Lisp 2 days 500 tines

tern. Like Garnet- CLIM supplies a retained object CLM. GI0NA Common Lisp 2 to 3 days 273 lines
model with incremental redisplay (which they call
"streams") and high-level input handling (called Figure 8:
"translators"). Also, CLIM provides a declarative Times and code size to create the editor of Figure 7 using

various systems. CLIM and GINA are discussed in the
mechanism for defining the window layout, but not article. MacApp is a commercial product of Apple and
for object definitions, so the programmer wrote draw- LispView is a commercial product of Sun.

methods for the objects and selection handles. The
programmer also had to write an event handler for the
creation of objects, since there is not an appropriate 8. Modularity
"translator." Some people claim that using methods is a better in-

terface to objects because it supports better infor-
In both GINA+-+- and CLIM, methods are needed for mation hiding. The motivation is that the internal im-

plementanon of the object can be more easily changed
if the interface is through methods. Therefore some

4For mme inorfmaaon on GINAi-+ or CLM/GINA for Usp. object systems, such as SELF [51, do not allow direct
canct Mike Spenke, P.O. Box 1316. D-W-5205 SL Auguscin 1, access to any object variables, but only provide access
Gemany, +49 2241 14-2642 spenkefmnd.de.

196

Declarative Programmini in a Prototvoe.Instance System -40

through methods. Garnet takes an opposite approach, proper sequencing, the centering method in A may be

and the main interface is through the data of objects. called twice, once by the move method in A, and once

However, this can be just as modular. by the move method in B. However, the centering
method in A should only be called once. after the

Ul Data vs. Methods methods in both B and C have terminated.
In Garnet, an object advertises its input and output

sots, and most objects of the same type use the same
slots (for example. all graphical objects have : leftt,
:top, :width, :height, :filling-
style, etc.). This corresponds to advertising the w
eported methods in other object systems. In Garnet.

through the use of constraint formulas, objects can
transform the parameter values in whatever way is

desired. For example, the Menu- Interactor Sets
the : selected slot of objects. It is up to the inter- B C
nal consraims in the selected object what this does, if

anything. The color, position, or font of the object
might have a formula depending on the se].ected Figure 9:
slot, and the Interactor does not care. This interface is A box centered over two other boxes. If either box a or C

just as modular as if the Interactor called a generic moves, box A should move so that it stays cenered over the

Become-Selected method. boxes.

Although Garnet does not currently provide In this case, the programmer is faced with two equally

mechanisms to declare which slots of an object can be unpalatable choices. The programmer can choose not
used from outside and which are internal, this could to provide explicit sequencing, in which case the
easily be added. This would provide the same protec- tonpri de ex e uenince. This is bothtion as class-instace models which have public an centering method in A may execute twice. This is both
pivate methods. mowasteful and potentially dangerous if the centering

method commits side-effects (in this case it probably

8.2 Constraints vs. Methods would not, but obviously there are situations where

Constraints also contribute to modularity in another this could pose a problem). Alternatively, the

way, by fixing a flaw in the conventional, imperative programmer could rely on the fact that the move

object-oriented model. In the conventional model, to method in C calls the centering method in A. and thus
not call the centerng method itself. However, the ima-

achieve certain types of behavior, the programmer no t of the move method in Howeper d on

must either explicitly arrange the methods so they ex-

ecute in the proper order, thus violating the the implementation of the move method in C, whch

modularity of objects, or else allow the methods to violates the notion of modularity.

execute in an arbitrary order, thus evaluating methods Notice that in either case the modularity principle is
more times than necessary. and possibly destroying additionally violated because B and C have to know

the correctness of the program if the methods commit that A depends on them (and later B has to know that
side-effects. For example, suppose that a programmer C depends on it). If the centering relationship be-

wants to keep a box called A centered above two other tween A, B. and C is later destroyed. not only must the
boxes called B and C (Figure 9). In a conventional centering method in A be deleted, but the move
system, the programmer might add a message to the methods in B and C must be changed as well. (A

move methods in B and C that calls a centering similar situation arose in the example of Figure 7,

method in A. Later the programmer decides that C where the conventional systems put code in the
should always be 20 pixels to the right of B. The methods of the boxes to maintain the lines.)

programmer thus expands the move method in B to

send a message to the move method in C. Without

197

Second Garnet Compendium41-
)

In a constraint-driven language, neither of these ject, it is only necessary to specify the specific
problems arises since the constraint solver handles changes to the graphics, rather than having to write
both communication between objects and the ordering completely new draw methods.
of constraints. In the above example, the programmer
would initially write a constraint that centered A 9. Conclusion

* above B and C. Later the programmer would add an The style of programming in the Garnet object system
additional constraint placing C 20 pixels to the right is quite different from other object systems: .he
of B. The constraint solver would automatically en- programmer collects together graphical objects. writes
sure that the constraints were evaluated in the proper constraints to define the relationships among them.
order. Thus the programmer would not have to worry and then attaches instances of pre-defined Interactor
about sequencing. In addition, the move methods for objects to cause the objects to respond to the user.
B and C would not have to know about the relation- Usually, much of the "programming" can be done
ships among the three objects (the constraint solver with graphical, interactive tools, rather than by writ-
would be responsible for propagating the change in- ing code. Even when not usirg interactive tools.
formation), so they would simply modify the local programmers rarely write methods when creating
state of their object. If one or both of the constraints Garnet code. Our experience suggests that this style
were later deleted, the move methods would not have of programming is much more effective for graphical
to be modified. Thus constraint-driven programming user interfaces. It would be interesting to see which
better preserves the modularity of objects. other types of programming it works well for. For

example, object-oriented data bases seem like a good
8.3 Interactors vs. Methods candidate, since they clearly use a "retained-object
The Gamet input model also provide better model," and a primary use of methods there is to up-
modularity than found in other systems. The graphics date objects and to maintain consistency among
are entirely independent of the behaviors, and they various objects. Many other application areas might
can be developed and modified separately. In other also benefit from this style of programming.
systems, models, views and controllers have always
been tightly coupled, so they all had to be carefully Acknowledgements
modified together. For help with this paper, we would like to thank Chris

Laffra, Francesmary Modugno, Andrew Mickish,
8.4 Re-use Scott McKay, Jade Goldstein, James Landay, and
Another key feature of Garnet is that it provides better Bernita Myers. Thanks also to Hans Muller, Scott
software re-use than most other toolkits. The McKay, Christian Beilken, Markus Sohlenkamp, and
programmer does not have to re-program new event John Pane for implementing the example application
handlers, since the built-in Interactors are sufficient. in different systems and for helping me understand
The programmer does not need to deal with window their code.
refresh or maintaining relationships among objects,
since the object system and constraint solver handle This research was sponsored by the Avionics
this. In addition, since we can be sure that there is an Laboratory, Wright Research and Development Cen-
object in memory for every object on the screen, it is ter, Aeronautical Systems Division (AFSC), U. S. Air

possible to provide higher-level widgets, such as the Force, Wright-Patterson AFB. OH 45433-6543 under
selection-handles. The handles contain constraints Contract F33615-90-C-1465. ARPA Order No. 7597.
that reference the selected object. Toolkits without
retalned otbets eanno supty selection Iendtle T.t vawm ths ofthhauithors candouald not bte inter-
widgets because they would need to access the ment are those of the author and should not be inter-
application's internal data structure to know where preted as representing the official policies, either ex-
objects are and how to move and grow the objects. pressed or implied, of the U.S. Government.

Another feature of Garnet is that, if the programmer
wants to make a slight modification of an existing ob-

198

Declarative Prournmiing in a Prototyie-Instance System .42

References 12. Jon Meads. "The Standards Factor". SIGCH!
Bulletin 19, 1 (July 1987). 34-35.

1. Paul Barth. "An Object-Oriented Approach to
Graphical Interfaces". ACM Transactions on 13. Kenneth J. Meltsner. "A Metallurgical Expert
Graphics 5. 2 (April 1986). 142-172. System for Interpreting FEA". Journal of Metals 43.

10 (Oct. 1991), 15-17.
2. Alan Borning. "The Programming Language

Aspects of Thinglab; a Constraint-Oriented Simula- 14. Brad A. Myers. Creating User Interfaces by
tion Laboratory*. ACM Transactions on Program- Demonstration. Academic Press, Boston, 1988.
ming Languages and Systems 3, 4 (Oct. 1981). 15. Brad A. Myers, Brad Vander Zanden. and Roger
353-387. B. Darnenberg. Creating Graphical Interactive Ap-

3. Alan Boming and- Robert Duisberg. "Constraint- plication Objects by Demonstration. ACM SIG-
Based Tools for Building User Interfaces". ACM GRAPH Symposium on User Interface Software and
Transactions on Graphics 5, 4 (Oct. 1986). 345-374. Technology, Proceedings UIST'89, Williamsburg,

VA, Nov., 1989, pp. 95-104.
4. Paul R. Calder and Mark A. Linton. Glyphs:

Flyweight Objects for User Interfaces. ACM SIG- 16. Brad A. Myers. Encapsulating Interactive Be-
GRAPH Symposium on User Interface Software and haviors. Human Factors in Computing Systems,
Technology, Proceedings UIST'90, Snowbird, Utah, Proceedings SIGCHI'89. Austin, TX, April, 1989, pp.
Oct.. 1990, pp. 92-101. 319-324.

5. Craig Chambers, David Ungar, and Elgin Lee. 17. Brad A. Myers, Dario A. Giuse, Roger
"An Efficient Implementation of SELF, a B. Dannenberg, Brad Vander Zanden, David
Dynamically-Typed Object-Oriented Language Based S. Kosbie, Edward Pervin, Andrew Mickish, and
on Prototypes". Sigplan Notices 24, 10 (OCL 1989), Philippe Marchal. "Garnet: Comprehensive Support
49-70. ACM Conference on Object-Oriented Pro- for Graphical, Highly-Interactive User Interfaces".
gramming; Systeas Lainguages and Applications; IEEE Computer 23, 11 (Nov. 1990), 71-85.
OOPSLA'89. 1& Brad A. Myers. "A New Model for Handling In-

6. James D. Foley and Victor L. Wallace. "The Art put". ACM Transactions on Information Systems 8, 3
of Natural Graphic Man-Machine Conversation". (July 1990), 289-320.
Proceedings of the IEEE 62.4 (April 1974). 462-471. 19. Brad A. Myers. Graphical Techniques in a

7. Scott E. Hudson and Shamim P. Mohamed. "Inter- Spreadsheet for Specifying User Interfaces. Human
active Specification of Flexible User Interface Dis- Factors in Computing Systems, Proceedings
plays". ACM Transactions on Information Systems 8, SIGCHI'91, New Orleans, LA, April, 1991, pp.
3 (July 1990), 269-288. 243-249.

8. Glenn E. Krasner and Stephen T. Pope. "A 20. Brad A. Myers, Dario Giuse, Roger
Description of the Model-View-Controller User Inter- B. Dannenbcrg, Brad Vander Zanden, David Kosbie,
face Paradigm in the Smalltalk-80 system". Journal Philippe Marchal, Ed Pervin, Andrew Mickish, James
of Object Oriented Programming 1, 3 (Aug. 1988), A. Landay, Richard McDaniel, and Vivek Gupta. The
26-49. Garnet Reference Manuals: Revised for Version 2.0.

Tech. Rept. CMU-CS-90- 117-R2, Carnegie Mellon
9. Henry Lieberman. "Using Prototypical Objects to University Computer Science Department. May,
Implement Shared Behavior in Object Oriented Sys- 1992.
teins". Sigplan Notices 21, 11 (Nov. 1986), 214-223.
ACM Conference on Object-Oriented Programming; 21. Brad A. Myers and Brad Vander Zanden. "En-
Systems Languages and Applications. OOPSLA'86. vironment for Rapid Creation of Interactive Design

Tools". The Visual Computer; International Journal
10. Mark A. Linton. John M. Vlissides and Paul of Computer Graphics 8, 2 (Feb. 1992). 94-116.
R. Calder. "Composing user interfaces with Inter-
Views". IEEE Computer 22, 2 (Feb. 1989). 8-22. 22. Lynn Andrea Stein, Henry Lieberman, and David

Ungar. A Shared View of Shanng: The Treaty of Or-
11. Scott McKay. "CLIM: The Common Lisp inter- lando. In Won Kim and Frederick H. Lochovsky,
face Manager". Comm. ACM 34, 9 (Sept. 1991), Ed., Object-Oriented Concepts. Databases. and
58-59. Applications, ACM Press. Addison-Wesley. New

York, NY, 1989, pp. 31-48.

199

43. Second Garnet Compendium

23. Pedro A. Szekely and Brad A. Myers. "A User Computing Systems. Proceedings SIGCHI'90. Seat-
Interface Toolkit Based on Graphical Objects and tle, WA, April, 1990, pp. 27-34.
Conszraints". Sigplan Notices 23, I 1 (Nov. 1988). 25. Brad Vander Zanden, Brad A. Myers, Dario
36-45. ACM Conference on Object-Oriented Po Giuse and Pedro Szekely. The Importance of Pointer
gramming; Systems Langages and Applicatons; Variables in Constraint Models. ACM SIGORAPH
OOPSLA 88. Symposium on User Interface Software and Technol-

24. Brad Vander Zanden and Brad A. Myers. ogy, Proceedings UIST'91. Hilton Head, SC, Nov.,
Automatic, Look-and-Feel Independent Dialog Crea- 1991. pp. 155-164.
tion for Graphical User Interfaces. Human Factors in

200

45-

Graphics. Vol 8. No. 2, February, 1992. pp. 94-116.

-("•wI npute 1 IntroductionA llllplluter

Creating visual interactive design tools can be a
Envireonment difficult task when the appropriate support is not

available. The Garnet toolkit (Myers et al. 1990)for rapidly was specifically designed to make the construction
creating interactive of interactive, graphical, direct manipulation pro-

grams, including interactive ,ser-interface builders,

design tools significantly easier. A toolkit is a collection of inter-
action techniques (sometimes called widgets or

Brad A. Myers' and gadgets), such as menus, scroll bars, and buttons,

Brad Vander Zanden z along with a programming mechanism to create
them. The Garnet toolkit has allowed us to quickly

School of Computer Science. Carnegie Mellon create a number of interactive user-interface design
University. 5000 Forbes Avenue, Pittsburgh. PA tools. It also provides an appropriate platform on
15213 USA which to investigate novel types of graphical tools.
e-mail: brad.myers(qcs.cmu.edu This article concentrates on those aspects of the
1 Computer Science Department. University of Ten- Garnet toolkit that make it effective for creating
,neute, 107 Ayres flail, Knoxville, TN 37996-1301,USA interactive design tools. It uses examples from Gar-

e-mail: bvz@cs.utk.edu net's own design tools to illustrate how the variotis
features of the Garnet toolkit simplified the tools'

The Garnet toolkit was specifically de- implementation. A number of previous articles
signed to make highly interactive graphi- have described Garnet (Myers et al. 1990) and the
cal programs easier to design and imple- design tools (Myers et al. 1989; Vander Zanden
ment. Visual, interactive, user-interface de- and Myers 1990; Myers 1991 a), but none have de-
sign tools clearly fall into this category. scribed in-depth the specific features of the toolkit
At this point, we have used the Garnet that were designed to support interactive design
toolkit to create three different interactive tools. Neither have any of the previous Garnet
design tools: Gilt, a simple interface build- papers discussed how the components of the 'Gar-
er for laying out widgets; Lapidary, a paesdsuedhwtecmonsofh'Gr
sophisticateddesigntoo] for lou e s; pid , a net toolkit simplify implementing the unique func-
sophisticated design tool for constructing tionality required by interactive design tools.

application-specific graphics and custom

widgets; and C32, a spreadsheet interface
to constraints. The features of the Garnet 2 The Garnet project
toolkit that made these easier to create in-
clude use of a prototype-instance object Garnet, which stands for Generating an .Analgam
system instead of the usual class-instance of Real-time, Novel Editors and Toolkits, is a re-
model, integration of constraints with the search project at Carnegie Mellon University. An
object system, graphics model that snp- important igoal is to itnvestigate appropriate fnin-
ports autOlllalic griplihicail updae alnd say- datiomis for the toolkiis of the future so they will

ing to disk of on-screen objects, separation be able to more effectively support highly in'terac-
of specifying the graphics of objects from tive graphical user-interface software. In addition,
their behavior, automatic layout of graphi- Garnet aims to create high-level interactive design
cal objects in a variety of styles, and a wid- tools to make user-interface software significantlv
get set that supports such commonly used easier to design and implement by both program-
operations as selection, moving and grow- mers and non-programmers.
ing objects, and displaying and setting Garnet contains both programming and interac-
their properties. tive design tools. The programming tools are called

Key words: User-interface design environ- the Garnet Toolkit, which is divided into two

ments - Toolkits - Object-oriented sys- layers. The lower layer, also called the toolkit in-

tems - Constraints - Input handling - trinsics, provides functionality that allows widgets

Garnet and application-specific graphics to be created.
This includes the object system, constraints, input

OJQprins request to: B.A. Myers handling, and graphical object support. The Gar-
net toolkit intrinsics are "look-and-feel indepen-

4Ti Vsuoe Coimpwet 11"2 I % 99 - 116
94 $1nmgwrV~tbs I99

-46

.'Visual

2I0 300

L~beU Lbl t3*I lnSTri

Title 10 400 44

Labh12 0 L . 5j

LabU Lab*13 Tageratur S Fig. I. Some of the gadgets in the Garnet toolkit
Labe12 L&be14 with the Garnet look-and-feet. which has the

LabeU LabelS 2S Drl>lc: buttons floating above the shadow, and moving in
"simulated 3-D" towards the shadow when
pressed

dent," which means that arbitrary graphics and be- Jade automatically creates menus and dialog boxes
haviors can be implemented. The intrinsics also from a textual list of their contents (Vander Zanden
provide a machine- and window-manager-indepen- and Myers 1990). A graphics artist can then modify
dent interface, so that software written using the his layout using a drawing editor, and Jade will
Garnet toolkit intrinsics will run without change remember the changes, even if the original textual
on any platform for which Garnet has been imple- specification is changed.
mented. Currently, Garnet runs on the X Window Garnet is implemented in Common Lisp and cur-
System, but Macintosh and Display Postscript ver- rently uses the X window manager. Garnet is there-
sions are planned. fore portable and runs on various machines and
The next layer of the toolkit contains a "widget operating systems. For example, Garnet runs on
set," which is a large and growing collection of CMU, Lucid, Allegro, TI, and Harlequin Common
menus, buttons, gauges, scroll bars and sliders Lisps on hardware such as Sun, DECStation, TI
(Fig. 1). and HP. Garnet does not use the Common Lisp
The interactive Garnet design tools include Gilt, Object System (CLOS) or any Lisp or X toolkit
Lapidary, C32, and a hybrid interactive-program- (such as InterViews (Linton et al. 1989), CLUE,
ming tool, Jade. Gilt (Myers 1991 b) is an interface CLIM, or Xtk (McCormack and Asente 1988)).
builder, which is a program that lets the designer The toolkit layer of Garnet (Myers et al. 1991) and
graphically place user-interface components in a Gilt have been released for general use, and there
window, and thereby create menus, palettes, and are over 150 licensed universities and companies.
dialog boxes. Gilt provides most of the functional- We expect to release other parts shortly.'
ity found in other interface builders, but was creat-
ed in only about two man-months and contains
about 2700 lines of Lisp code. Lapidary (Myers 3 Related work
et al. 1989; Vander Zanden and Myers 1991) is a
.esearch vehicle for investigating how to provide The Garnet system as a whole is a user interface
new functionality in visual interactive design tools. development environment, which is sometimes
For example, it lets the user-interface designer called a user interface management system (UIMS).
draw pictures of what the user interface should These tools have been surveyed in various places
look like and then demonstrate how it should (Hartson and Hix 1989; Myers 1989a; Brown and
change in response to user input. Lapidary is the Cunningham 1989).
only interactive design tool that allows the behavior There are many different toolkits available today.
of application-specific graphical objects to be de- ' Garnet is available free of charge. Contact the First author
fined without writing code. C32 is a spreadsheet for mote information about obtaining Garnet, or send clectron-
interface for defining constraints (Myers 1991 a). ic mail to garnet cs.cmu.edu

95

47-

Computcr
The most famous are probably Macintosh Tool- The event-handling part of Garnet categorizes be-
box, Windows and Presentation Manager toolkits haviors into a few "interactor" object types and
for the PC, and various X toolkits based on Xtk is based on the Model-View-Controller idea from
(McCormack and Asente 1988) including Motif Smalltalk (Krasner and Pope 1988). However, the
and OpenLook. All of these toolkits provide librar- Views and Controllers tend to be so tightly linked
ies of widgests, but no support for handling input in Smalltalk that the programmer must program
and output in the main application window. The new Controllers for most new objects, whereas in
NextStep toolkit for the NeXT computer provides Garnet programmers rarely need to program new
an object-oriented set of widgets, as well as a well- interactors. In addition, Garnet's interactors are
defined method for subclassing the existing objects built into the toolkit, whereas in Smalltalk the pro-
to create application-specific objects. However, grammer must code the event handlers. Finally,
these objects still have to deal with all input and the interactors provide a rich set of parameters for
output directly. None of these toolkits provide spe- customizing their behavior so that it is unusual
cial features to make it easy to create interactive for a programmer to create subclasses of the built-
design tools. in interactor types (although it is possible).
Some of the features found in the Garnet toolkit Gilt, the Garnet Interface Builder, is very similar
have been used in previous systems, but Garnet to other interface builders, such as Menulay (Bux-
is the first to integrate them all. The prototype- ton et al. 1983), Trillium (Henderson 1986), Dialog-
instance model for objects (Lieberman 1986) has Editor (Cartelli 1988), vu ýSingh and Green 1988),
been used in SELF (Chambers et al. 1989). Con- NeXT's Interface Builder, the Prototyper from
straints, which are relationships that are specified Smethers Barnes for the Macintosh, and UIMX
once but maintained automatically by the system, from Visual Edge for X. Lapidary extends the ideas
have been widely used by research systems (Born- in these to support the creation of widgets, based
ing and Duisberg 1986). Constraints can be either on ideas in Peridot (Myers 1990a; Myers 1988).
one-way or multi-way. One-way constraints allow Lapidary can also create application-specific
the constraint solver to change only one of the graphics.
objects in the constraint in order to satisfy it; multi- C32 is based on financial spreadsheets like
way constraints allow any of the objects in the VisiCalc, Lotus 1-2-3, and Microsoft Excel. Other
constraint to be changed. Early multi-way con- systems that have used spreadsheets for defining
straint systems include Sketchpad (Sutherland user interfaces include NoPumpG and NoPumpll
1963), which pioneered the use of graphical con- (Wilde 1990). The NoPump systems were stand-
straints in a drawing editor in the early 1960s, and alone spreadsheets that were not integrated with
Thinglab (Borning 1981), which used constraints an toolkit, so they had to invent a constraint solver
for graphical simulation. More recently, Thinglab and a way to handle input, which the Garnet tool-
has been refined to aid in generating user interfaces kit provides to C32.
(Freeman-Benson et al. 1990). CONSTRAINT
(Vander Zanden 1989) provided a user-interface
development environment that employed multi- 4 Garnet interactive design tools
way constraints, but introduced a new constraint-
solving algorithm that made multi-way constraints This section describes several of the interactive de-
efficient enough to be solved in real time. Most sign tools built by the Garnet group. Some external
systems that have been designed for developing users have also built interactive design tools on
user interfaces use one-way constraints because of top of Garnet [for example. Humanoid (Szekely
their simplicity and efficiency. Grow (Barth 1986), 1990)]. Later sections will illustrate how various
Peridot (Myers 1988), and Apogee (Henry and features of the Garnet toolkit simplified the con-
Hudson 1988) are three examples. Grow was per- struction of these tools.
haps the first user-interface development system
that employed constraints, Peridot was the first to
try to infer constraints, and Apogee was the first 4. 1 Gilt
to employ lazy evaluation. Garnet currently uses
one-way constraints, but a more powerful model Gilt, the Garnet Interface Layout Tool, is a simple
is being investigated, widget layout toot patterned after the NeXT inter-

96

-48

Computer
users to create objects from scratch, such as the

Prope-rti as... floating button menu in Fig. 3, or edit instances
of objects created from prototypes in libraries. A

a 0 set of iconic constraint menus allow users to posi-
Beetat m----:.*r=/mI w t/q.ilt., lip I tion objects in a scene. If users cannot find the

Ediat lmi,! constraint they need, the customize button can be
hit to gain access to the C32 spreadsheet described

o - in Sect. 4.3. Users can specify behaviors either

*• Level: through dialog boxes or via demonstration.

246, .10 4.3 C32

Fig. I. Gilt work window showing a sample dialog box being C32 is a spreadsheet interface for defining complex
¢a wd constraints (Myers 1991 a). C32 stands for CMU's

Clever and Compelling Contribution to Computer
face builder. It is intended to help create dialog Science in CommonLisp, which is Customizable
boxes that do not change size and whose contents and Characterized by a Complete Coverage of
do not change dynamically (although the widgets Code and Contains a Cornucopia of Creative Con-
can "grey out" when not valid). Gilt supplies a structs, because it Can Create Complex, Correct
palette of the built-in Garnet widgets (either with Constraints that are Constructed Clearly and Con-
the Garnet or Motif look-and-feel) plus rectangles, cretely, and are Communicated using Columns of
lines, text labels, and bitmaps to be used as decora- Cells that are Constantly Calculated so they
tions. The user can select objects in the palette and Change Continuously and Cancel Confusion.
plaLt them in a workspace window (Fig. 2). Objects The intention is that the Lapidary icons or a simi-
in the workspace window can be selected, moved lar mechanism can be used for simple constraints,
or changed in size, their text labels changed, and but sometimes the user will need more complex
their other properties set. Commands for duplicat- relationships. C32 provides the same benefits for
ing and deleting, objects are provided. There is also constraint definition as conventional spreadsheets
an Align command, which adjusts objects' position provide for financial operations. Some features of
and spacing. C32 are:
If the user needs a more dynamic interface, for ex-
ample to have one object's property tied to an- - The current values of the constraints are visible
other's, the code generated by Gilt can be edited and are updated immediately if the associated
using a text editor, or read into Lapidary (because graphical object changes, either due to the userall the tools use the same file format). interacting with the graphics or some program

changing a value. This makes the results of the
constraints visible and therefore more understand-

4.2 Lapidary able.
- Menus provide the most common functions that

Lapidary is a graphical interactive design tool that might be inserted into constraints, so uscrs do not

allows users to pictorially specify all graphical as- have to know the function syntax.

pects of an application, including the widgets that - Object and slot references arc automatically gen-
surround application windows and the objects and crated, so users do not have to know the syntax
behaviors that go inside application windows for references or the particular form the reference
(Myers et al. 1989; Vander Zanden and Myers should take (objects can be referenced directly by

1991). Lapidary is an acronym that stands for Lisp- name or indirectly through their position in the
based 6ssistant for Prototyping interactive _De- aggregate hierarchy and C32 figures out which is

signs Allowing Bnemarkable Yield, more appropriate). The user can select the referent
Many of the windows that comprise the Lapidary either by pointing to a C32 spreadsheet cell or just

interface are shown in Fig. 3. Lapidary provides by pointing to the actual graphical object in a Gar-

a direct-manipulation drawing editor that allows net window.

97

49-

--- i sual
Computer

(a) () (c) (d) (e)

I awn IIIII I& t I OA904!~ ~ ~~" "" "hI! " s" IFinsam"S"' l m.•

I _

"I t•I --

______________.r

"•--Won i7- Red 0
I "lft aa E~ &jest Gre

Co of m um - s _,I -hopescgsri 69 um&Zca4EJmo

(I) (,W (ws)

Fq. 3a-11. Various L~apidary windows. The drawing window (c) indicating that the behavior will apply tc the objects in color-
contains floating buttons for a color menu. The constraint menu menu-items and that the final feedback will be theC black xor
below it (g) has been used to align the objects within each rectangle. The window in the upper-lef't corner (a) contains the
burton, the items within the menu, and the black xor rectangle, main Lapidary commands, and the remaining windows contain
which is the final feedback (currently over "Orange"). The dialog geometric properties that may be set in Lapidary

box in the lower-left corner (I) defines the nienu behavior by

- C32 guesses how to paranieterize constraints herited and whether it is calculated using a con-
when they are copied from one place to another straint. Figure 4 shows an example.
or generalized into procedures, so abstract and re-
usable constraints can be constructed by example.

- '.raphical techniques are used to help trace and 44Jd
debug constraints. While Jade is only partially interactive, it is inter-

Each object has its own column in the spreadsheet, esting how it uses the features of the Garnet toolkit.
with the rows showing the values of each of the Jade (a Judgernent-based _Automatic l~ialog _Edi-
slots. Icons are used to show whether a slot is in- tor) takes a textual specification of a dialog and

98

- 50

Computer

___________STIxuin ARILUD
stxilla IC32-

__________ 'Ton 12

:Draw-ltinctio, Lui.- Stvl. PAL -D7~U L (. D

Fig. 4. C32 viewing three objects. The scroll bars can be used to the formula icon and the value is shown in a regular font.
to see more slots or columns. Changing the window's size will This is because the value is usually different from the proto-
change the number of slots and objects displayed (the number types. For example, the : width slot of a text object usually
of rows and columns). Field values are clipped if they are too contains a formula that computes the width based on the ob-
long, but can be scrolled using editing commands. The (icon ject's font and string value. Most text objects inherit this formu-
means that the slot value is computed with a formula (con- la, but still have a different current value, because their string
straint). All inherited slots are shown in italics and marked and font values are different
with the (I) icon. When a formuia is inherited, the icon is next

automatically generates a dialog box (Vander Zan- active user interfaces, such as the interfaces of visu-
den and Myers 1990). It is typically used when al interactive design tools. These include:
it is too inconvenient to use Gilt or Lapidary, for
example when an interface has dozens of dialog - Use of a prototype-instance object system in-
boxes. A graphics artist can use a direct manipula- stead of the usual class-instance model.
tion editor to add decorations or modify the layout - Integration of constraints with the object system.
created by Jade, and Jade will remember the Graphics model that supports automatic graphi-
changes, even if the underlying textual specification cal update.
is modified. A sample dialog and its textual specifi- - Separation of specifying the graphics of objects
cation is shown in Fig. 5. In laying out the dialog, from specifying the behavior.
Jade consults designer-provided look-and-feel and - Support for saving objects on the screen or in
rule libraries. The look-and-feel libraries help Jade memory to disk as text files in a way that they
decide which gadgets should be associated with can be read back into the system.
various elements of the textual specification. For - Automatic layout of graphical objects in a vari-
example,. Jade has selected a Garnet-style radio ety of styles, such as rows, columns, tables, trees,
button in Fig. 5a and an OpenLook-style widget and graphs.
in Fig. 5b to represent a single-choice behavior. - Widget set that supports such commonly used
The gadgets for the look-and-feel libraries can be operations as selection, moving, and growing ob-
created using Lapidary or C32. Jade uses the rule jects and displaying and setting their properties.
libraries to help it lay out the dialog box. In the Several of the features contain innovations, such
future, we plan to develop an interactive design as structural inheritance in the prototype-instance
tool that allows graphics artists to define rules by system, pointers in the constraint system, an inte-
example, perhaps by applying constraints to an ex- gration of constraints with an automatic graphical
ample object. update system, interactors model for separating

graphics from behavior, and a method for minimiz-
ing the amount of information written to disk when

5 Toolkit properties saving objects. Other features, such as automatic
layout and widget set are not novel but they are

Many features of the Garnet toolkit were added useful in creating interactive design tools. The fol-
specifically to make it easier to create highly inter- lowing sections discuss these features in detail.

99

51-

Computer

(rae-ialogdi ~
Ton ("Font."

({Fumamily" ('timecs" "heuvtia "coureie "smo

Fas

(" =undeCIne "bold "Itat i"

((Edi rtaTextomGnru et rmFrua

"Text Propomau

rotb

7 :F o-a o Few

(create-dialog
((("Font"

((Standard-Fonits"
(("Family" ("times" "helvetica" "-curier* "symbol"))
"(-Size" ("small" domedium" 'large"))
("Style"
("underline" "bold' "italic")
(:behavior :multiple-choice))))

("Pont From File"
(:behavior :text))

"ffFormula>")
(("Edit Text" 'Generate Text trom Formula"

"Remove Text Formula")
(:behavio.

:command

a(:stop-action
toext-handler)))C:S0op-group WOK." "Cancel" "So Away-)

(:stop-act ion tfont-stap-act ion))))) Fig. Sa-c. Alternative Garnet a and OpenLook b

(create-dialog style dialogs for specifying the properties of a
(((open" ("edit" ("copy* "cut" "paste" "delete")) text object and controlling an application. Both

"save" "quit") dialogs' layout and look-and-feel were generated
(:behavior :command) automatically by Jade from the same textual

C (stop-Akction control-menu-handler)))) specification c

100

- 52

(omhputcr
5.1 Prototype-instance model net automatically creates instances of all the parts

and link.j them together in the appropriate manner.
5.1.1 General description Edits made to the prototype are automatically re-

flected in all instances. For example, if objects are
The Garnet object-oriented programming system added or removed from the prototype, the same
supports a prototype-instance model, rather than cdit is made to all the instances of that prototype
the conventional class-instance model used by (see Fig. 6).
most other object systems, such as Smallt.lk, T'-,: function that adds a new object to an aggre-
C + +, and CLOS. In a prototype-instance model, rtt takes an optional locator argument (e.g., front,
there is no distinction between instances and class- back, before obj, after obj) to determine where to
es; any instance can serve as a "prototype" for insert the object with respect to the other children
other instances (even an object that is being dL. of that aggregate (which is important, because the
played on the screen can be a prototype), order determines the back-to-front drawing order
All data and methods are stored in "slots" (some- and therefore which objects are covered by other
times called fields or instance variables). Slots that objects). After the object is inserted into the aggre-
are not overridden by a particular instance inherit gate, Garnet checks a special slot, which contains
their values from their prototypes. There is no* dis- a list of all the instances of the aggregate. For each
tinction between data and method slots in Garnet. instance of the aggregate, Garnet creates an in-
Any slot can hold any type of value, and in Com- stance of the inserted object and inserts the new
mon Lisp a function is just a type of value. Slot instance into the instance aggregate. Instances of
aames can contain any number of printing charac- the inserted object that are propagated to an aggre-
ters (e.g., left, interim-selected, obj-- gate's instances are also positioned using the lo-
over). cator argument. If the locator specified that the
An instance can also add any number of new slots, added object should be inserted before or after a
Unlike conventional class-instance models, this child, Garnet finds the instance of this child in each
means that the number of slots in each object is of the aggregate's instances and then inserts an in-
variable - -.ach object can have a different number stance of the added object in the appropriate spot-
of local slots, depending on which properties it When an object is removed from an aggregate,
wants to inherit defaults for and which it wants Garnet first removes the object from the aggre-
to override. Moreover, the number of slots of an gate's components list, then removes instances of
object can even change dynamically. Slots can be the object from each of the aggregate's instance-
explicitly removed from objects at any time. Also, components list.
if a program sets the value of a slot that does not
exist, then the slot is created automatically. If a
program asks for the value of a slot that does not
exist, NIL is returned (there is a function that tests
whether a slot exists). All slots are untyped.
The efficiency of Garnet's object system is actually
better than other class-based Lisp object systems,
such as CLOS. For example, on a Sun SPARCsta- a

tion I running Allegro Common Lisp, the simplest
slot accessor function takes two- and one-half times
as long in CLOS (23.7 microseconds), than in Gar-
net (9.5 microseconds). To create an instance in
CLOS (3486 microseconds) takes about eight times b
longer than in Garnet (433 microseconds).
A unique feature of the Garnet object system is Fig. 6a, b. Before a and after b editing a prototype.
the support for structural inheritance. Objects can When the prototype (shown on the left) is edited to

be grouped into an "aggregate" object. Then this change the font to italic and add a shadow, the
modifications are immediately reflected in all of the

aggregate can be used as a prototype for new ob- instancs (shown on the tightl. Note that the suzes of
jects in the same , .y as a primitive object can the boxes chacge in b because the font width is
be. When an instance is made of an aggregate, Gar- smaller

101

53-

(omputer

If the programmer wants the new object to be inde- the generated code more easily, and the code is
pendent of the prototype (so that edits to the proto- shorter and more efficient.
type do not affect the instance), then the built-in The output file is simply the Lisp code to create
copy function can be used instead of the instancing the objects. Therefore, when the code is loaded by
function. The resulting object will look the same an application or by an interactive design tool, the
as an instance, but there will not be any back point- objects will be createdi The prototype-instance ob-
ers. ject system allows a tool to modify the objects in

memory, which means that it is never necessary
for the tool to look at or parse the gen. -ated file.

5.1.2 Saving and restoring objects Generated files are in exactly the same form as
the code that a programmer would write by hand

Another very important feature of the Garnet ob- to create the same objects. Therefore, no special
ject system is that there is built-in support for say- mechanism is needed to read objects in again: the
ing and restoring objects to the disk. A single Gar- standard Lisp loading function is sufficient. Neither
net function takes an in-memory or on-screen ob- special formats for output, such as UIL for the
ject and writes it to a disk file in a format that Motif toolkit, nor associated parsers, are needed.
can later be read in again. If the object is an aggre- Programmers of design tools do not need to write
gate, then all the parts are written to the file also. code generators, as in most other systems, because
Direct pointer links among objects are automati- the built-in Garnet function can be used. The stan-
cally converted to indirect references so that no dard Lisp compiler can also be used to make the
actual pointers will be written to the disk. Con- generated files more efficient.
straints (see Sect. 5.2) are also output in an appro- In addition, because the generated object descrip-
priate form. tions are standard Lisp using the conventional
In addition to the convenience of having saving Garnet style and functions, it is very easy for pro-
and restoring code provided to applications, pro- grammers to read the code to make sure that it
viding a central mechanism simplifies the imple- is correct. It is also possible to directly modify the
mentation of interactive design tools. The tools can code using a text editor if necessary. Inasmuch as
create whatever structures they want without hay- Garnet requires no special mechanism to read the
ing to worry about converting these structures to code, the programmer is fret. to make arbitrary
a suitable external structure, because the built-in edits and the rile will still be loadable (assuming
save-restore mechanism can write out all Garnet the edits do not introduce errors, of course). For
objects. example, the programmer could add or subtract
Due to the tree structure of aggregates (aggre- children from an aggregate, add new slots for spe-
gates contain primitive objects and other aggre- cial processing, write complex constraints that can-
gates, which themselves may contain objects and not be expressed using the design tools, and even
aggregates), it is economical to save them using add or delete new objects. In addition, because the
a tree-structured format, listing only parts and slots programmer's changes will be reflected in the in-
that override defaults defined by the prototype. memory versions of the objects after the code is
First, the differences between each object and its loaded into a design tool, these edits will be pre-
prototype are computed. Inasmuch as an object served when the files are written out again.
can add, remove, or even override the children it Because interactive design tools are only capable
inherits from its prototype, these differences may of specifying certain types of objects and behaviors,
include structural differences as well as simple there are cases when a programmer will need to
value differences. Only these differences and the edit the code created by the design tool in order
name of the prototype are needed to reconstruct to achieve the desired functionality for an interface.
a copy of the object. If there a. structural differ- Thus, it is important that the programmer be able
ences, Garnet writes out commands that tell the to modify the generated code and still be able to
object-creation mechanism how to create addition- operate on the objects and behavior using the de-
al children, override existing children, or omit cer- sign tools. Garnet's ability to create code in the
ta n children. By writing out only the differences language used by the programmer without having
rather than the complete structure of each instance, to resort to special or binary representations is
the programmer is able to understand and change therefore an important advantage when creating

102

.54

Computer
new interactive design tools. Because the code can appropriately. The very same editing operations
be compiled, there is also no efficiency penalty for can be used on prototypes and on instances, both
this. from the user's and the tool implementer's point
Both Lapidary's and Gilt's implementation are of view, and Garnet takes care of the bookkeep-
substantially simplified by this save-restore facility. ing.
When either tool wants to save an object, behavior, As an example, Lapidary uses the prototype-in-
or window to disk, they first write some standard stance model to allow users to dynamically create
header information to the file, and then call the and modify objects. Initially, objects are created
Garnet object-writing function on the entire win- with only a basic set of graphical slots, methods,
dow. As long as programmers do not change the and components. Users can then attach constraints
header (which they have no reason to do), both and behaviors and add or subtract objects. If the
tools can read a file simply by using the Lisp components of a prototype are modified, the modi-"load" function. fications will be immediately propagated to all in-
Another advantage of the simple format for the stances, thus allowing the user to immediately see
generated code is that it is possible to write compil- the new look in context. This form of structural
ers that optimize the generated objects, for example inheritance is unique among interface builders. For
by removing extraneous slots or constraints that example, users can make the edits shown in Fig. 6
a tool may have inserted for its own use. This can using Lapidary.
improve the efficiency of the applications that use
the objects. 5.1.3.2 Creation of prototypes. The lack of dis-

tinction between prototypes and instances aiso
means that interactive design tools can easily pro-

5.1.3 Uses of the prototype-instance model in de- vide a mechanism for users to make libraries of
sign tools objects. The tool can allow the user to seleci an

object (which, of course, may be an aggregate of
The use of a prototype-instance model has a large other objects) and use that object as a prototype.
number of significant advantages for interactive de- The prototypes might be collected together in a
sign tools. window to form a "style sheet." The user can then

use instances of the prototype in application win-
5.7.3.1 Dynamic editing. In conventional class-in- dows. If the user decides that the prototype does
stance object systems, it is very expensive to modify not look or operate correctly, the prototype can
classes. If there are existing instances of the classes be edited (which will also change all the instancesI
in memory, then modification is often not even al- so the user can see immediately how all the in-
lowed (for example in C + +). Instead, the in- stances will look in context. In a similar way. a
stances must be destroyed, classes recompiled, and palette for the final program can be created interac-
then new instances must be created. Even in sys- tively in the design tool. The palette will contain
tems that permit class evolution, the data struc- prototype objects created using the design tool and
tures representing the instances are semi-compiled the program will only need to create an instance
and must be redone if classes are allowed to change. of the appropriate one when the end user wants
Thus, something as simple as adding a new instance a new object.
variable to all objects in a class while the objects It is this ability to create prototypes on the fly
are being viewed is either very expensive or impos- that allows the Lapidary tool to create application-
sible in most systems. This makes it very difficult specific graphical objects. If the user is designing
to create an editor that will allow dynamic proto- a graph editor with nodes and arcs, some graphical
typing and editing of objects and their structure. objects can be drawn to represent a node. thcsc
The dynamic editing capabilities of the Garnet pro- can be collected into an aggregate, and then that
totype-instance model clearly makes it ideal for aggregate used as a prototype for all the nodes.
prototyping syste &b. An interactive design tool can The application program then only needs to create
simply provide mechanisms for the user to add and instances of the node prototype, and does not need
remove slots, objects, and properties from objects. to know anything about its internal graphical ap-
If the user happens to modify a prototype object, pearance or structure (it might be a single rectangle
then.Garnet insures that all instances are updated or a whole collection of objects).

103

55-

(onhputcr
5.1.3.3 Adding new slots. The ability to add new groups of objects can be dynamically loaded at
slots to existing objects is quite useful for interac- any time. Garnet requires that the prototype for
tive design tools. For example, the tool might want objects be loaded before any instances of that pro-
to store information about how the objects were totype are used, but it is easy to insure that the
created, determine how the object's properties were files that create instances automatically load the
set, or save the previous values of properties to prototypes first, if they are not already loaded.
support undo. Even if the objects are primitive ob- Dynamic loading can also be used to reduce the
jects, such as rectangles and text, or instances of memory size of applications. For example, Gilt
predefined widgets from a library, the tool can.sim- uses bitmap pictures to represent the widgets that
ply create new slots in the objects using slot names can be loaded. The first time that a particular type
that are meaningful to the tool. Because messages of widget is needed. Gilt simply loads the prototype
are simply function values in slots, new messages and creates an instance of it. Many of the large
can just as easily be added to pre-existing objects. and complicated widgets are not needed by most
No new "classes" are needed. Thus, a design tool users, and so they do not need to ever be loaded.
can add tool-specific methods, such as a custom
destroy method.
These new slots that the tool creates can be written
out to the disk with the rest of the objects. This
is very useful if the slots contain status Or identifica-
tion information that the tool needs when reading 5.2 Constraints
the objects in again'. Alternatively, the tool imple-
menter can declare that these extra slots should Garnet provides constraints that allow program-
not be written out with the objects. mers to specify relationships between objects that
Lapidary makes use of the ability to add and delete are automatically maintained by a constraint
slots both to support itself and to support behav- solver. The relationships expressed by constraints
iors added to the objects. For example, it adds may be graphical, for example, to position a check-
the obj over slot to feedback objects so that they mark next to a set of menu items, or non-graphical,
can indirectly reference the object they should for example, to make the selected item in a proper-
highlight. Lapidary also adds slots to support indi- ty menu (e.g., a line style) match the corresponding
rect references to objects and offsets in its position- property in the selected object. The contents of an
ing and sizing constraints. For example, to support object's slot can be an ordinary value, such as a
a constraint that aligns the left side of an obiect number or string, or they can be a constraint that
with the side of another object, Lapidary adds an calculates the value. When the value of the slot
objover slot to reference the other object and is requested, Garnet will automatically evaluate the
a left-offset slot to reference the size of the constraint and return the calculated value.
offset. The use of indirection through these slots Garnet constraints are arbitrary pieces of Lisp
allows Lapidary to support the fine-tuning of a code. They may be thought of as functions that
constraint without having to destroy and recreate take a set of slots as parameters and return a result.
it each time a user changes an offset or a target Hence, they are one-way constraints. The con-
of the constraint. Before saving a set of objects, straint-solver is responsible for detecting changes
Lapidary removes its support slots so they will not to the slots referenced by a constraint and re-evalu-
clutter up the generated code. Similarly, Lapidary ating that constraint automatically. Both eager and
reinstalls these slots when the objects are loaded lazy algorithms for implementing the constraint
later. solver are presented in Vander Zanden et al.

(1991).
A novel feature of Garnet is that programmers can

5.1.3.4 Dynamic leading. Another important fea- write constraints that indirectly reference other ob-
ture of the object system is that single objects or jects through pointer variables and that these vari-

ables can be changed under program control at
I in this case, the programmer would, of course, have to be runtime. For example, suppose a checkmark

careful to preserve this information if hand-editing of the gener- should be able to appear next to any item in a
ated code was necessary menu. A programmer could create this behavior

104

- 56

"Yi.sua! -
(ornptiter

by inserting the following constraint in the left ines each of the slots in the prototype, and if a
slot of checkmark:3 slot contains a constraint, places an instance of

chee*ark. leftasolf-objover, right.1O that constraint in the corresponding slot of the new
instance object.

The reference self. objover. right causes the If the prototype is an aggregate, Garnet creates
constraint solver to consult the objover slot in pointers in the aggregate to each child and back-
the current object (in this case, the check mark). pointers in each child to the aggregate. For exam-
The constraint solver will then request the value pie, the thermometer aggregate in Fig. 7 has point-
of the right slot in the object contained in the ers to its bulb, shaft, and mercury stored in the
slot named objover, slots bulb, shaft, and mercury respectively.
The use of pointer variables considerably simplifies Similarly, each of the thermometer's children have
the conversion of example objects to prototypes a pointer to the thermometer stored in their par-
as well as several other features of interactive de- ent slot. Constraints in any object in an aggregate
sign tools (see Sect. 5.2.1). It also provides the full can therefore reach any other object by traversing
power of procedural abstraction in constraints, the aggregate hierarchy using the appropriate set
Each constraint is equivalent to a procedure that of pointers. For example, the mercury needs to
may be called with a new set of arguments on each know the position and size of the shaft in order
invocation. Previous constraint systems have al- to position itself in the shaft. It can access these
lowed regular variables, but not pointer variables values through the parent and shaft pointers
(Vander Zanden et al. i99i). For example, the 10- (e.g., mercury. left-t
pixel offset could be made into a variable called self. parent. shaft. left).
offset, but the reference- objover would not By referencing other objects in the aggregate hier-
be permissable in other systems. If the programmer archy indirectly via pointers, the programmer can
wanted the 10-pixel offset to be a variable in Gar- ensure that the constraints in instances of proto-
net, he could rewrite the constraint as self. types will automatically reference the appropriate
objover. right+self. offset, which would information. Thus, Garnet is able to implement the
cause the constraint solver to look for the value instancing of aggregate objects simply by creating
of offset in the object that contained the con- instances of each of the components of the aggre-
straint. gate hierarchy, creating instances of constraints in
Constraints are first-class objects, just like any constrained slots and creating the appropriate set
other object in Garnet A constraint object con- of pointers. It is not necessary to modify the code
tains slots that contain a pointer to the constraint's of the constraints themselves.
lisp code, the value last computed by the con-
straint, an indication of whether this value is up-to-
date, and the object and slot to which this con-
straint is attached. A design tool is free to add 5.2.1 Advantages of constraints
other slots to this constraint object that will assist
the design tool in determining the type of this con- Constraints are appealing, because they declarati-
straint or other relevant information. Like other vely describe relationships between a program's en-
objects, constraints may serve as prototypes. An tities. A constraint solver automatically keeps the
instance of a constraint will inherit the pointer to constraints satisfied, thus propagating changed
its function, thus allowing multiple constraints to data to the appropriate locations. In constructing
use the same piece of code. interactive design tools, constraints can be used
Representing constraints as objects and allowing to specify the graphical layout of the tools* objects
pointer variables simplifies the integration of con- and the dynamic graphical behavior of these ob-
straints with the prototype-instance system. When jects. In addition, they can be used to support many
Garnet makes an instance of a prototype, it exam- of the services that these tools provide. Finally.

the constraint system makes it easy for interactive
For the sake of readability, we are expressing constraints design tools to provide constraints to the interface

in a more conventional infix notation rather than Lisp's prefix designers. For example, Lapid-try allows users to
notation. In Garnet, this constraint would actually be written
as (+(gv : self : objover : right) 10) where gv stands attach constraints to objects that graphically posi-
for get value tion the objects or control their dynamic behavior.

105

57-

Ctomputer

The support provided by constraints is covered in obj slots with the appropriate objects and the in-
the following sections. stance arrow will attach itself to the desired objects

in the correct way.
5.2.1.1 Prototypes. Interactive design tools can Other parameters, such as the label of a labeled
use pointer variables in constraints to easily con- box cannot be automatically identified without as-
vert example objects to prototypical objects. sistance from the designer. However, once the de-
Whenever a designer attaches a constraint to an signer identifies these slots, the design tool can con-
example object, the design tool can use pointer struct a constraint that retrieves the value of the
Variables to indirectly reference the objects to slot from the root of the prototype. This constraint
which this object is constrained. Instances of this will use backpointers in the aggregate hierarchy
example object will inherit these constraints, and to climb from the object that owns the slot to the
by setting the pointer variables appropriately, the top-level object in the prototype's aggregate hierar-
instances can be constrained to other sets of ob- chy. For example, suppose the color of the mercury
jects. Thus, pointer variables automate part of the in the thermometer in Fig. 7 should be a parameter.
process of converting the example object to a pro- Once the designer identifies the color as a parame-
totype. ter, the design tool can insert the following con-
However, this conversion is not complete until the straint into the color slot for the bulb and mercury
design tool has identified which slots in the exam- objects:
pie should be parameters that are set at instance- colormself. parent. color
creation time. Part of this identification can be au-
tomatical•ly performed when the designer saves the This constraint goes to the parent of either the
object. The design tool can check to see whether bulb or mercury object, whi(;h is the thermometer,
therm are any slots in the saved object which refer- and retrieves the color set by the programmer.
ence objects that are not being saved. If so, the
design tool can infer that these slots point to exam-
ple objects and replace these example objects with 5.2.1.2 Spreadsheet tools. Spreadsheets have
null pointers. This process converts the pointer proven to be a popular design interactive design
variables to parameters, because instances of this tool (Wilde and Lewis 1990; Myers 1991 a). One
prototype can instantiate the pointer slots with the of the main difficulties in constructing a spread-
appropriate objects and exhibit the same behavior sheet is building a constraint solver for the spread-
or layout relationship that the prototype did. For sheet's equations. Garnet automatically provides
example in Lapidary, suppose the designer has such a constraint solver and a powerful set of con-
drawn the two boxes and arrow shown on the straints that will be adequate for most spreadsheet
screen in Figure 8a. The designer wants arrows interface-design tools.
that are used in the application to be able to attach Of course, C32 uses the built-in constraint solver
themselves to the sides of objects, so the designer to evaluate the constraints that the user creates.
attaches the ends of the arrow to the sides of the In addition, C32 makes extensive use of constraints
two boxes using alignment constraints (Fig. 8b). in its own implementation. For example, each
Internally, Lapidary represents the constraints us- value display has a constraint that ties it to the
ing pointer variables: actual value in the associated object. Therefore. if
arrow: the value changes as a result of user interaction

endptl: self.from-objright-center with the interface, the cell's value will be automati-
endpt2: self. to-obj. left-center cally updated. Similarly, the visibility of the icons
from--obj: boxl that show whether the slot is inherited and whether
to-obj: box2 the slot contains a constraint is controlled by con-

If the designer then saves the arrow without saving straints to the actual cells. The font of the cell label
the boxes, Lapidary notices that the slots f'rom- and value is also constrained to the inheritance
obj and to-obj do not point to objects being flag, so that italics is used if the slot is inherited.
saved, infers that these slots point to example ob-
jects, and replaces their values with null pointers.
When an application creates an instance of this 5.2.1.3 Demonstration. Constraints help support
arrow, it can instantiate the from-obj and to- several forms of demonstrational programming

106

-58

Computcr

Fig. 7. A thermometer and its aggregate hierarchy. References
from one object to another use paths through the hierarchy.
Objects that are part of the thermometer have programmer-
assigned names, such as bulb and mercury, and references to
the thermometer from a part use the standard parent slot
Fig. $a. b. The designer wants to create a prototype arrow
where one endpoint should be connected to the right side of a

Pic) box and the other endpoint should be connected to the left side
I of a box. To do this, the designer draws the arrow and two

panM botts a and uses a line-constraint menu to attach the endpoints
of the arrow to the example botes b. When the arrow is saved,
the references to the boxes in the arrow's constraints will be
replaced with null pointers, thus converting the example arrow
to a prototype

Fig. 9. A inenu that displays selections by moving them to the
7 right column. A designer can demonstrate this behavior by using

constraints to place an unselected item in the left column and a
selected item in the right column. Lapidary will notice that
different constraints control the position of a selected and
unselected item's left side, and generate code to select the
appropriate constraint based on the item's selection status

L7ýorputsr Scienlce

Engtsh
i_ as Weavtnq

8a 9

cs49 Lb..b Comumbg Mema

cs594- ! i

y-offset 7 ; _-

8b

107

59-

- '1 isual
Comiputer

(Myers 1990b). In demonstrational programming, Because the "before" and "after" values of the
the designer manipulates objects under the obser- objover and left slots differ in this example,
vation of the design tool. The design tool then tries Lapidary synthesizes constraints that choose be-
to infer the general form of the behavior from this tween the differing values, based on the value of
specific example. Peridot (Myers 1990a) and Meta- a variable, such as selected. For example, the
Mouse (Maulsby and Witten 1989) are two other constraints might be:
examples of demonstrational systems.
A simple form of demonstrational programming objover: if self. selectedthen right--eolumn else left--columnn
is one in which a designer specifies a "before" state left: if self. selected

for an object, edits it, and presents the design tool then self. objover. right - self. width

with an "after" state. For example, a "3-D" button else self. objover. left

might be in one position normally, and move when
the mouse is pressed on it. To support this, the Lapidary then creates instances of these new con-
design tool would allow the user to draw the two straints and installs them in the other items in the
states. It would then figure out differences, deter- menu, thus generalizing the behavior from the ex-
mine how to implement the changes, and generalize ample item to all items in the menu.
the behavior so that it applies to any of a related The constraints in Garnet can support more gener-
group of objects, such as a set of items in a menu. al forms of demonstrational programming as well.
If the designer edits the objects using constraints, To guess which kinds of layouts the user is trying
then the differences are fairly easy to determine. The to achieve, as in Peridot (Myers 1990a), the creator
design tool can check for differences in constraints of a design tool can derive the set of constraints
on the same siots, differences in offsets or saing that enforce the desired types of layouts. These con-
factors, or differences in pointer variables. Based straints will comprise a formal, rigorous basis for
on these differences, the design tool can synthesize the demonstrational system. When a user manipu-
a constraint that incorporates the before and after lates objects, the design tool can use various met-
values and makes the selection based on the value rics to measure how well the various constraints
of an indicator, such as a Boolean variable, fit the demonstrated behavior and choose those
For example, Lapidary supports this form of de- constraints that best fit the behavior. The advan-
monstrational programming by creating a copy of tage of using constraints is that quantitative met-
the object to be demonstrated ard allowing the rics can be developed that rigorously assess the
designer to edit the copy. When the designer is closeness with which various constraints match a
finished, Lapidary compares slots in the copy (the demonstrated behavior. Because the demonstra-
"after" state) with slots in the original (the "before" tional system can explain its inferences in terms
state). For any slots that are different, Lapidary of the metric, the designer of the demonstrational
creates a constraint that simply chooses between system can improve the system's inferences by
the values, based on a controlling parameter. modifying the metrics, based on feedback received
For instance, suppose a designer wanted to demon- from users.
strate that items should move to the right column
of the menu in Fig. 9 when the user clicks on them. 5.2.1.4 Annotation of specifications. Some sys-
This behavior could be demonstrated by selecting tems, such as Jade and Chisel (Singh and Green
an item in the left column and declaring that the 1989), produce a rough cut of an interface from
item is in its "before" state. The designer could a textual specification. An interactive design tool
then change the constraint on the item's le ft slot, can then be used to polish the generated interface,
so that the item is now positioned in the right col- for example, by adding decorations or reposition-
umn. The before and after states would look as ing objects. If the interface designer later changes

follows: the textual specification, the changes made by the
design tool should be remembered. Thus, the de-

Before After sign tool should annotate the textual specification
in some fashion.

left: self. objover, self. objover. In a Garnet-generated design tool, constraints are
left right-

self.midth used when adding decorations or repositioning ob-
objover: left-column right-column jects. For example, if a rectangle is drawn that en-

108

-60

closes a group of radio buttons, it will typically uses rules similar to this one in laying out objects
be attached to the radio button group using con- in a dialog box.
straints. In turn, the radio buttons are tied to var-
ious entities in the textual specification. By keeping
track of the objects to which constraints are ap- 5.3 Automatic graphical update
plied, the tool can determine to which entities in
the textual specification the decorations apply. The graphical object system in Garnet is different
Thus, even if a designer changes the underlying from many other systems in two respects. First,
textual specification, the interactive design tool can it uses a retained object model that allows it to
still remember the graphical changes that were automatically update the screen when objects
made and faithfully reproduce them when the tex- change or a part of the window becomes uncov-
tual specification is run through the interface gen- ered. Most other toolkits force the application to
erator. For example, the rectangle in the above ex- manually handle redisplay by determining which
ample would be constrained to surround the set objects are changed and which objects they overlap
of radio buttons, so the rectangle will grow au- and then issuing erase and draw commands that
tomatically if new items are added to the set. cause the display to be appropriately updated. A
Jade takes advantage of Garnet's annotation capa- second difference from other systems is that the
bilities when a graphics artist uses a direct manipu- display system is integrated with the constraint sys-
lation editor to either change the layout or add tern, so the constraint system automatically notifies
decorations to a Jade-created dialog box. To anno- the display system whenever an object changes.
tate the textual specification, Jade keeps track of The retained object model is somewhat similar to
which objects are being repositioned or decorated a display list in that each graphical object on the
and then maps these objects to their underlying screen corresponds to an object in memory. How-
entities in the textual specification. When the ever, the objects are at a higher level than the ob-
graphics artist is satisfied and saves the dialog box, jects in a display list, because they are integrated
Jade uses Garnet's writing facility to save the de- with the constraint system, can be accessed by an
corations, constraints used to reposition the ob- application, and are used by Garnet to determine
jects, and references to the appropriate items in which portions of the display to update. For exam-
the textual specification. pie, to move a rectangle to a new position, the

application sets the left and top slots of the
5.2.1.5 Rule-based systems. Many systems that object and Garnet automatically takes care of eras-
generate interfaces from textual specifications use ing the object at its old position and drawing it
rules in order to layout the various scenes in the at the new position. In addition, the constraint sys-
interface (Vander Zanden and Myers 1990; Wiecha tem propagates the changes to other objects in the
et al. 1989; Bennett et al. 1989). One way to imple- system, and these objects, as well as any other ob-
ment the rules is to have them generate a set of jects that overlap the changed objects, are also re-
constraints from a prototypical set of constraints, drawn. If the window manager needs part of the
The use of pointer variables makes it easier for window to be redrawn (for example, because the
rules to create instances of these constraints, be- user has uncovered it), Garnet can handle this au-
cause the pointer variables can be made to point tomatically without involving the application.
to the object or set of objects to which a rule is The algorithm used by Garnet always tries to mini-
applied and the constraints will automatically en- mize the number of objects that are erased and
force the rule. For example, a rule that places a redrawn, rather than simply redrawing the entire
set of buttons at the top right of another group window, which can be important for complex
of buttons might be expressed as: scenes. Garnet keeps track of all objects changed

by either the application or the constraint system.
at-top-right-rule: When asked to update the screen, it finds the

left: self. buttons. right.lO bounding rectangles of the changed objects in their
top: self. buttons, top old and new positions and then redraws all objects

A tool could apply this rule by generating instances that intersect those regions. Clipping regions,
of these constraints in the appropriate slots in a which are supported by the underlying window
button group and setting the buttons pointer, managers, are used so that other objects will not

109

61 -

Comlputer
be affected. As an example of the resulting per.*or- Move-arow- to move or change the size of an
mance, moving one object through a window con- Interactor: object or one of a set of objects
taining 200 other objects takes 14.9 milliseconds using the mouse. This interactor
per move on a Sun SPARCStation (67 moves per can be used for one-dimensional
second) rather than the 188 milliseconds (5.32 or two-dimensional scroll bars,
moves per second) it would take if Garnet simply horizontal and vertical gauges,
redrew all the objects in the window each time. and for moving or growing appli-
The advantage of the- retained object model for cation objects in a graphics edi-
tool builders is that they do not have to have to tor.
build the elaborate data structures required to re- liew-Point- to enter one, two, or an arbitrary
fresh the screen and they do not have to handle Interactor: number of new points using the
the complex task of interfacing the constraint mouse, for example for creating
solver with the display manager. When a property new lines or rectangles in an edi-
of an object should change (e.g., to have a new tor.
color or position), the tool can simply set the ap- Angle- to calculate the angle that the
propriate slot of the object. If other objects are Interactor: mouse moves around some point.
affected by the change, their slots will be automati- This can be used for circular
cally changed as well. If an object should be de- gauges or for rotating objects.
leted, it can simply be removed from the window's Trace- to get all of the points the mouse
list of objects. Garnet handles the rest. Inter&ctor: goes through between start and
Another advantage is that often tools do nSt need end events, as is needed for free-
to create their own representation of the data. Each hand drawing.
window contains a list of the objects in it and appli- Text-String- to input a small (optionally multi-
cations are free to add their own slots to objects Interactor: line) string of text.
to hold any necessary extra information (as de- Each interactor is parameterized in various ways,
scribed above in Sect. 5.1.3.3). Therefore, the win- so the programmer can control the mouse or key-
dow's object list can often be used by applications board events that cause it to start and stop as well
as their description of the current state. All the as the optional application procedures to be called
application-specific slots will be written out au- on completion. The most significant parameters,
tomatically to the file along with the standard however, are the objects that are used as the places
graphical slots, where the interactor should operate and the (op-

tional) objects that will handle feedback. For exam-
ple, the programmer might create a set of text ob-
jects to be the domain of selection in a menu and

5.4 Behaviors a black XOR rectangle to be the feedback. Each
type of interactor has a well-defined protocol with

In Garnet, the graphical objects do not respond which it controls the graphics. This protocol is ex-
to input events. Instead, separate objects, called plained in depth in (Myers 1990c).
interactor objects, handle all input (Myers 1989b; The interactors are first-class objects, and they can
Myers 1990c). The interactors encapsulate the be included in prototypes ýe.g., a prototype scroll
common interactive behaviors found in direct ma- bar). Interactors in prototypes also will be saved
nipulation interfaces. Each type of interactor han- to disk and read back in automatically.
dies a different kind of behavior. Currently, the Another feature of interactors is that they can be
interactor types are: easily turned on and off. Each interactor has an

active slot, which can contain a constraint that
Menu- to choose one or more items from determines whether the interactor should run or
Interactor: a set or for a single, stand-alone not. This makes it easy for design tools to imple-

button. This interactor can be ment the "Build" vs "Run" modes: when in build-
used for menus, radio buttons, mode, the interactors in the interface under con-
and making selection "handles" struction are inactive, and when in run-mode, they
appear over objects in a graphics are active. Similarly, the interactors that handle
editor. selection and editing for the design tool use the

110

- 62

S......... iVisual -
Computer

reverse constraint. Gilt and Lapidary use this fea- 5.4.2 dvantages of interactors for IDTs
ture to disable widgets unless the user hits the
"Run" button. In addition to the general advantages of interac-

tots, there is a particular advantage for the designer
of an interactive design tool. If the tool wants to

5.4.1 Advantages of interactors for writing allow the user to define the interactive behaviors
graphical programs of the objects being designed, it must first have

a model of those behaviors. In many systems, this
The interactors paradigm helps programmers model consists of a set of pre-defined interaction
create graphical programs in a number of ways. techniques that are tightly bundled with the graph-

havior, the code of the tool itself is more modular. ics, making it difficult, if not impossible, to attach
Second, ite makes it teas tool intselfisgare odieret behaviors to application objects. In contrast, the
Second, it makes it easier to investigate different interactors model separates behavior from the
looks and feels. Third, because each interactor pro- graphics, so that behaviors may be attached to wid-
vides a high-level of built-in functionality, many get objects (e.g., menus, scroll bars, buttons) as well
otherwise complex behaviors can be added to inter- as application objects. Indeed, several of the inter-
faces easily. For example, a common way to handle actors, such as the move-grow, new-point, and
selection is for the user to press on an object and trace interactors, were specifically designed for ap-
have "handles" appear (see Fig. 10). When the user plication objects, while the menu, text-string, and
presses on a handle, the object underneath moves angle interactors all have application uses (the
or changes size. This behavior can be provided in menu interactor, for example, can be used to select
Garnet by using a menu-int,-ractor with the han- One or mor application objects).
dies as a feedback object for the selection and a The interactors model also provides a rich set of
move-grow-interactor with the handles as the start- parameters that allow designers to specify a wide
ing position. The programmer only needs to create variety of behaviors without having to drop down
instances of these two types of interactors and pro- to the programming-language level. Because there
vide the appropriate parameters; no event loops are only six types of interactors and the parameters
need to be coded and no methods need to be are well-defined, an interctive design tool can easily
written.' Also, in-place text editing is very easy provide dialog boxes for the user to fill in the de-
to support, simply by attaching a text-editing inter- sired values or can attempt to infer the behavior
actor to any text string in the interface. For exam- and its parameters from the user's actions. Thus,
pie, it was easy in the Gilt interface builder to sup- the interactors make it much easier to implement
port editing of the menu and button labels directly interactive design tools that allow a designer to
in the graphics window using a text-interactor specify the behavior of application objects as well
(rather than requiring the new labels to be entered as the behavior of new widget objects.
in a property sheet). The sizes of the graphics sur- Lapidary is a good example of a design tool that
rounding the label are automatically adjusted as takes advantage of these features of interactors. It
letters are typed, due to the constraints built into provides dialog boxes for each of the interactors
the widgets (for example, the rectangles around a and allows the user to attach graphics to an inter-
labeled-button will expand and shrink), actor by selecting graphical objects and pointing
Fourth, the interactors package supports dragging to the a ipropriate graphical parameter in the dia-
objects among windows in the same way that they log box (e.g., the start-where parameter, which
are moved inside a single window. This can be used controls which objects the interactor operates on,
to move or copy objects from one window to an- or the interim and final feedback parameters, which
other Lather than using the more clumsy cut-and- control what type of feedback the user sees as the
paste style. behavior is executing). For example, if the user ts
Fifth, the interactors package supports the win- rrcalinp a new kind lof menu ,t, ht. call poll q) ille
.ttow lIldlldlgCt ititlItllCl tU ,Allow Caby tLUJJyiI6 o0 chuice-ol-itcitlS dialog box (see t-Hg. 31, create an
text from one application to another. Extensions instance of a menu interactor, and attach it to the
to support copying of graphics are planned. graphics that the user has created. The behavior

" However, sce Sect. 5.6, where a widget that handles this au- can then be interactively tested by putting Lapid-
tomatiacally is explained ary in "test" mode.

111

63-

I Silsetian

, Courier

.FA- GFneva

, 11 b

10

""ItI

gml-.as gcayvecd) U!!
'.MgT'-rMIIMM: NM Fig. 10. Standard built-in Garnet graphics-selcction
DMY 0 .0f" •Rwxcu" , ORzz gadget. It displays control handles around the selected
r-R E•- object or objects. Pressing on a object with the left

0hC.AI3-: S button selects it. If the user presss with shift-left or the
PX1R-WXV -P- T middle mouse button, then other objects can be added or
r=4K-.a -W- N!!, removed from the selection set. Pressing on a white
&M, 8I1: -LET handle moves the object, and pressing on a black one
!R~lIin-aGII : NL changes the object's size. When a line is selected, only
P=.-UI8N: NIL three control points are shown: tht. black ones change
ME * the end p.aint and the white one moves the line, keeping

T1-"UT- . S 4 kthe same length and slope. If multiple objects arc selected.

,r-QE-LVT.-P-. EL then they all move or change size together
X'ZI•: (-time "*ft1V¢i•, "Courier* "ocrm*q•)e.-.(l:.. -4 = Fig. iIa, b. The property sheet a that appears for a radio
IF=:: W button panel b in Gilt. The aggrelist control slots, such as

uOtIECTON and v-SPACING can be changed dynamically and
the radio buttons will re-orient automatically

"Ila

Lapidary exploits interactors in other ways as-well, inferences about the meaning of the user's demon-
Internally, interactors make it much easier to stration have a good chance of being correct
create all of Lapidary's complicated behaviors,
such as the multiple ways of selecting objects and
providing feedback or the different ways of select- 5.5 Automatic layout
ing constraints in the iconic constraint menus. Ex-
ternally, Lapidary uses the interactors to separate There are many times when elements of a user in-
the editing of graphics and behaviors. Users creat- terface need to be displayed in a regular fashion.
ing objects from scratch can concentrate on derin- For example, the items in a menu are often evenly
ing their graphics and behaviors separately and in- spaced in a column. Garnet provides various spe-
tegrating them when they are finished. Further- cial forms of aggregates that automatically lay out
more, they can later edit either the behaviors or their components. Interactive design tools can easi-
graphics, thus modifying either the look or the feel ly provide automatic layout to users by simply
without touching the other. Instances of widgets creating instances of these special aggregates and
from prototype libraries can be similarly edited, allowing users to then add the components.
This separation allows a user to rapidly prototype One such aggregate, called an "aggrelist," will ar-
different looks-and-feels, range the elements in a row, column, or table. The
Currently, we are investigating ways to infer the programmer can specify the spacing of the elements
parameters of the interactors from a demonstration and whether they are centered or justified to the
of the behavior, as in the earlier Peridot system left, right top, or bottom. Each element can be indi-
(Myers 1988). Because there are only six possible vidually created by a program and added to the
behaviors and a small number of parameters, the aggregate. Alternatively, a single prototype can be

112

-64

. Z t W" tr

supplied along with a list of strings or other values a scrolling window facility that displays horizontal
and the aggregate will automatically create an in- and vertical scroll bars and automatically handles
stance of the prototype for each string or value, refreshing parts that are scrolled onto the screen.
Aggrelists are used throughout the Garnet widget Another special Garnet widget supports selection
set to control the layout of menus and buttons. of graphical objects. If the programmer creates an
Because the layout parameters to an aggrelist can instance of a multiple-selection object in
be changed dynamically (e.g., to change the del- a window, then any of the. ohjects in the window
ments to be centered or left-justified or to put them can be selected using the mouse and selection han-
iti multiple rows or columns), this allows the toolkit dles will appear around them (see Fig. 10). The ob-
user to customize the layout of the elements. For jects then can be moved or changed in size. All
example, the Gilt interface builder only needs to this functionality is supplied by the multiple-
set the value of the orientation field of an aggrelist sele ct it on widget, and the programmer only has
to change a set of radio buttons from horizontal to make sure that the objects to be edited under-
to vertical. No special code is needed in Gilt to stand the standard protocol so they can be modi-
adjust the layout. The controlling slots are pro- fled. This widget is used extensively by Gilt.
vided to the user as fields in a property sheet (see Another useful widget for some design tools is a
Fig. 11). Aggrelists are also helpful in the C32 im- property sheet, which shows labels and current
plementation, where they are used to lay out the values (see Fig. 11). Each label is usually the slot
fields in columns. name of the field of the object that specifies the
Another special type of aggregate will arrange the property and the value is usually a textual repre-
elements in a tree or graph. A default layout algo- sentation of the value. However, the property-sheet
rithm is supplied, but the programmer can supply widget allows an arbitrary widget to be used as
a different one if desired. There are also default the value. For example, in Fig. 11, a special widget
prototypes for graphics for the nodes and arcs, but is used for the DIRECTION slot, which allows the
again the programmer can supply different proto- user to select one of a set of values with the mouse,
types. and the FONT property contains an icon, which

pops up a font-selection dialog box (which itself
was created using Gilt).
An interesting feature of the Garnet system is that

5.6 Widgets the built-in widgets can be easily used in interactive
design tools even though they were hand-coded"

The Garnet widget set contains many widgets that without any thought for their use in this way. The
help create interactive programs, such as visual in- ability to dynamically load Garnet objects and
teractive design tools. It contains the standard wid- dynamically change their properties makes any
gets found in other toolkits, such as radio buttons, Garnet object usable in design tools. For example,
check boxes, scroll bars, sliders, text-entry fields, the widgets displayed by Gilt are simply those that
and various forms of fixed, pop-up, and pull-down were already in the Garnet widget set. We did not
menus. These come in two varieties: the Garnet have to create new widgets for use by Gilt.
look-and-feel shown in Fig. I and a Motif look- Lapidary takes advantage of Garnet's button and
and-feel (Fig. 12). These can be used to make the type-in widgets in constructing its interactor dialog
dialog boxes and main command menus of an edi- boxes, main editor menu, and iconic constraint
tor. There. are also widgets to pop-up windows with menus. It also extensively uses the error gadgets
error messages, confirmation requests, and to inform users of various mistakes. In the future,
prompts. It is interesting to note that implementing we plan to integrate the property-sheet widgets
the Motif widget set (which does not use any of into Lapidary in order to allow the user to edit
the Motif code that implements the Xtk C version) non-graphical properties of an object. Lapidary
took only two man-weeks on top of the Garnet does not use the multi p1e-selection widget.
toolkit intrinsics. because it implements a more complex selection
In addition, however, the Garnet widget set also model. For example, by using different keyboard
contains many high-level widgets that can help keys and mouse buttons, the user can select the
with the insides of the design tool or end-applica- aggregate of the selected object or select the object
tion windows. For example, one gadget supplies hidden underneath the object.

113

65-

(oMputer

Fig, 12. Some of the widgets with a Motif
look-and-feel implemented in Garnet

Finally, the C32 window uses scroll bars and the interpreter can be used to support "Run Mode,"
scrolling-window widget. Of course, the menus and where the tool allows the interface to be exercised
buttons are Garnet widgets. The value of each slot to show how it will operate for the end user. The
uses a scrollable-text field widget (so if the value tool can simply create the actual objects, con-
is too large, it can be scrolled left and right). straints, and interactors that will be present in the

end-user interface and the Lisp interpreter allows
the interactors and constraints to overate.

5.7 Other toolkit features

In addition to those discussed above, the Garnet 6 Future work
system also provides a few other features that make
it easier to build interactive design tools. The Garnet project is on-going and we are con-
First, the object-oriented graphics package and the stantly trying to improve the toolkit and high-level
interactor objects hide the details of the window tools. Current work on the toolkit is focusing on
manager from application programs. Therefore, a increasing the functionality and efficiency of the
programmer can create a tool that will run on dif- object system and the constraints. We will also add
ferent architectures. In addition, the interfaces gesture recognition as a new primitive interactor
created by the users of the interactive design tools type, so that applications and interactive design
will also run on multiple architectures. tools can experiment with gestural interfaces.
Another feature stems from the decision to imple- Most future work, however, will concentrate on
ment Garnet in Lisp. The built-in Lisp interpreter the interactive design tools themselves. The tools
is available to the tool builder so that no additional described here need to be completed and released
interpreters are needed. This helps support the in- and more functionality needs to be added. In addi-
teractive loading of objects and interactive creation tion, we plan to explore new forms of tools that
of constraints, as described above. In addition, the will allow even more of the application-specific be-

114

-66

(;omnpitcr

havior of objects to be specified. The emphasis will senting the official polices. either expressed or implied, of the

be on specifying the behavior by demonstration U.S. governmentL

rather than through dialog boxes or hand-cod- Additional support for Garnet was supplied by Apple Com-

puter, General Electric, and NEC.

In addition to new specific tools, we want to look
at more comprehensive "frameworks" for interac- References
tive design tools and other interactive applications.
For example, almost all applications have a palette Barth P (1986) An object-oriented approach to graphical inter-
qf choices and a workspace window in which the faces. ACM Trans Graph 5(2):142-172

Bennett WE, Boics SJ. Gould ID, Greene SL. Wiecha CF 19891
user creates instances of objects in the palette. Ob- Transformations on a dialog tree: rule-based mapping of
jects in the workspace wiadow can then be selected content to style. Proc ACM SIGGRAPH Symposium on
and processed further. Whereas the toolkit pro- User Interface Software and Technology. Williamsburg, VA.

vides primitives that make all these steps easy, tie pp 67-75
Borning A (1981) The programming language aspects of thing-

programmer still has to put them together. A lab; a constraint-onented simulation laboratory. ACM
framework like Unidraw (Vlissides and Linton Trans on Progr Lang Syst 3(4): 353-387
1989) or MacApp (Schmucker 1986) would make Borning A, Duisberg R (1986) Constraint-based tools for build-

this easier. Thus, we will be developing ctie for ing user interfaces. ACM Trans Graph 5t4Y:345- 34

Garnet. The planned framework will also support Brown JR. Cunningham S (1989) Programming the user inter-
face; pnnciples and examples. John Wiley & Sons. NewUndo, Help, and other high-level operations. York

Another focus will be on how to provide toolkit- Buxton W, Lamb MR, Sherman D, Smith KC (19831 Towards
level support for demonstrational interfaces to a comprehensive user interface management system. Pro-
make it easier for design tools and applications ceedings SIGGRAPH'83, Detroit. Comput Graph [7(3):35-

42
to implement a demonstrational interface. Cardelli L (1998) Building user interfaces by direct manipula-

tion. Proc ACM SIGGRAPH Symposium on User Interface
Software, Banff, pp 152-166

7 Conclusions Chambers C, Ungar D, Lee E (1989) An efficient implementa-
tion of SELF, a dynamically-typed object-oriented language
based on prototypes. 49-70. ACM Conference on Object-

By specifically designing the underlying toolkit in- Oriented Programming; Systems Languages and Appiica-
trinsics to support the insides of application win- tions. Sigplan Notices, 24(10)
dows, Garnet is able to make the creation of visual Freeman-Benson BN, Maloney J, Borning A 11990) An incre-
interactive design tools significantly easier than mental constraint solver. Commun ACM 33(1):54-63

Hartson HR, Hix D (1989) Human-computer interface develop-
with conventional tooikits. Features such as the ment: concepts and systems for its management, Comput
use of a prototype-instance object system, con- Surv 21(10:5-92
straints, automatic graphical update, automatic Henderson Jr DA (1986) The trillium user interface design envi-

object saving, automatic layout, the use of interac- ronment. Human Factors in Computing Systems. Proc SIG-
CHI'h6. Boston, pp 221-4-)

tor objects, and high-level widgets that support Henry TR. Hudson SE (1988) Using active data n a UIMS
graphical selection, property sheets, and error re- Proc ACM SIGGRAPH Symposium on User Interface Soft-

porting have allowed us to quickly create a variety ware Banff. pp 167-178

of innovative interactive design tools. In addition. Krasner GE. Pope ST (1988) A descr •&ion of the modl-view-
thpbuild the application- controller user interface paradigrr in the smalltalk-80 >ys-

these tools are able to help ucm J Object Oriented Progr 1(3):2t- 4 9
specific. highly-interactive graphical parts of user Lieberman H (1986) Using prototypiLia objects to implement
interface and not just layout the widgets that go shared behavior in object oriented systems. ACM Confcr-

around the main application window or in dialog ence on Object-Oriented Programming; Systems Languages
and Applications. Sigplan Notices 21 11 1 214- 23

boxes. Linton MA, Vlisstdes IM, Calder PR (1989) Composing use'
interfaces with InterViews_ IEEE Comput 2212) 8-22

Acknowledgeme..ts. For help with this paper, we would like to Maulsby DL. Witten IH (1989) Inducing procedures in a direct-

thank Bernita Myers and the referees. manipulato.. environment. Human Factors in Computing

This research was sponsored by the Avionics Lab, Wright Re- Systems. Proc SIGCHI'89. Austin, pp 57-02

search and Development Center, Aeronautical Systems Divi- McCormack J, Asenic P t1988) An overview of the X toolkit.

sion (AFSC), U.S. Air Force. Wright-Patterson AFB, OH Proceedings of the ACM SIGGRAPH Symposium on User
45433-6543 under Contract F33615-90-C. 1465. Arpa Order No. Interface Software, Banff, pp 46-55
7597. The views id conclusions contained in this document Myers BA (1988) Creating user interfaces by demonstration.
are those of the authors and should not be interpreted as repre- Academic Press. Biston

115

67-

Myers BA (1989a) User interface tools: introduction and sur- Vander Zanden B, Myers BA, Giuse D, Szekely P (1991) The
vey. IEEE Software 6(1): 15--23 importance of indirect references in constraint models. Proc

Myers BA (1989b) Encapsulating interactive behaviors. Human ACM SIGGRAPH Symposium on User Interface Software,
Factors in Computing Systems. Proc SIGCHI'89, Austin, Hilton Head
pp 319-324 Vlissides JM, Linton MA (1989) Unidraw: a framework for

Myers BA, Vander Zanden B, Dannenbcrg RB (1989) Creating building domain-specific editors. Proc ACM SIGGRAPH
graphical interactive application objects by demonstration. Symposium on User Interface Software and Technology,
Proc ACM SIGGRAPH Symposium on User Interface Soft- Williamsburg, pp 158-167
ware and Technology, Williamsburg, Fp 95-104 Wiecha C, Bennet W, Botes S, Gould J (1989) Generating user

Myers BA (1990a) Creating user interfaces using programming- interfaces to highly interactive applications. Human Factors
by-example, visual programming, and constraints. ACM in Computing Systems. Proc SIGCHI'89. Austin, pp 277-
Trans Progr Lang Syst. 12(2): 143-177 282

Myers BA (1990b) Demonstrational interfaces: a step beyond Wilde N, Lewis C (1990) Spreadsheet-based interactive graph-
direct manipulation. Tech Rep CMU-CS-90-162, Carnegie ics: from prototype to tool. Human Factors in Computing
Mellon University Computer Science Department Systems. Proceedings SIGCH['90. Seattle, pp 153- 159

Myers BA (1990c) A new model fo, handling input. ACM Trans
Inf Syst 8(3):289-320 BRAD A. MYERS is a re-

Myers BA, Giuse DA, Dannenberg RB, Vander Zanden B. Kos- search computer scientist at
bie DS, Pervin E, Mickish A, Marchal P (1990) Garnet: Carnegie Mellon University.
Comprehensive support for a graphical, highly-interactive where he is the principal investi-
user interfaces. IEEE Computer 23(11):71-85

Myers BA (1991 a) Graphical techniques in a spreadsheet forg face Development Environ-
specifying user interfaces. Human Factors in Computing ment Entiron-
Systems. Proc SIGCH['91, New Orleans. pp 243-249 mert. From 1980 until 1983. he

Myers BA (1991 b) Separating application code from toolkits: Myworked at PERQ Systems
eliminating the spaghetti of call-backs. Proc ACM SIG- puter science at the University
GRAPH Symposium on User Interface Software, Hilton of Toronto, where he developed
Head the Peridot UIMS. He received

Myers BA. Giuse D, Dannenberg RB,Vander Zanden B, Kosbie his MS and BSc degrees from
D, Marchal P, Pervin E, Mickish A, Kolojejchick JA (1991) the Massachusetts Institute of
The Garnet Toolkit reference manuals: support for highly- Technology, during which time
interactive, graphical user interfaces in Lisp. Tech Rep, he was a research intern at Xer-
CMU-CS-90-1 17-R, Carnegie Mellon University Computer ox PARC. His research interests inclide user-interface develop-
Science Department ment systems, user interfaces, programming by example, visual

Schmucker KJ (1986) MacApp: an application framework. Byte programming, interaction techniques, window management.
11(8):189-193 programming environments, debugging. and graphics. He be-

Singh G, Green M (1988) Designing the interface designer's longs to SIGGRAPH. e ir t, e gACM, IEEE. and the IEEE
interface. Proc ACM SIGGRAPH Symposium on User In- Computer Society.
terface Software, Bangf, pp 109-116

Singh G, Green M (1989) A high-level user interface manage-
ment system. Human Factors in Computing Systems. Pro- BRAD VANDER ZANDEN :s
ceedings SIGCHI'89. Austin, pp 133-138 assistant professor at the Uni-

Sutherland IE (1963) SketchPad: a man-machine graphical versity of Tennessee and an ac-
communication system. AFIPS Spring Joint Computer Con- tive participant in the Garnet
ference 23:329-346 pro)ect. His work has focused

Szekcly P (1990) Template-based mapping of application data on developing new paiadigms
to interactive displays. Proc ACM SIGGRAPH Symposium for creating interactivc visual
on User interface Software, Snowbird, pp 1 9 environments and on ereatine

Vander Zandcn B (1989) Constraint grammars - a new model new incremental aluorthlints or
for specifying graphical applications. Hluman Factors ti constraint satisfaction. .\lore
Computing Systems. Proceedings SIGCHI'89, Austin, pp generally his research interests
325-330 include user-interface dcclop-

Vander Zanden B, Myers BA (1990) Automatic, look-and-feel ment systems, program visual-
independent dialog creation for graphical user interfaces. ization and animation, con-
Human Factors iii Computing Systems. Proceedings SIG- - - straint systems, programming
CHI'90, Seattle. pp 27 34 environments, and grapllh-s Dr

Vander Zanden 8, Myers BA (1991) Creating graphical interac- Vander Zanden received his bachelors degree from Olio Stlate.
live application objects by demonstration: the Lapidary in- and his MS and PhD from Corneli. He also spent two wears
teractive design tool. 12-minute videotape. SIGGRAPH as a postdoctoral fellow at Carnegie Mellon ie is a member
Video Review Issue 64 of the ACM ar.J IEEE.

116

et

G033
14 14.00

100

25.40
Dole= - 356.98

32.9 +
Clear ftrkspace m 89.25

(198.60D 4

100

(1. 12r
QU it

Reprinted from Watch What I Do: Programming by Demonstration,
Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman.

David Maulsby, Brad A. Myers and Alan Turransky, eds.
Cambridge, MA: The MIT Press. 1993. pp. 219-236.

Garnet:
Uses of Demonstrational
Techniques

by
Brad A. Myers
Carnegie Mellon University

Garnet is a comprehensive user interface development environment in Lisp for ion
X/11 (Display Postscript and Macintosh versions are in progress). It helps
create graphical, highly-interactive, direct manipulation user interfaces. Garnet
contains many high-level tools, including the Gilt interface builder [Myers 9 1d],
the Lapidary interactive design tool [Myers 89b], the C32 spreadsheet system
[Myers 91a], the Jade dialog box system [Vander Zanden 90], and more to come.
Garnet also contains a complete toolkit, which uses constraints [Vander Zanden
91a], a prototype-instance object model, and a new model for handling input
[Myers 90c]. The toolkit also contains two complete widget sets, one with the
Motif look and feel.

Typical applications created with Garnet include: drawing programs similar to
Macintosh MacDraw, user interfaces for expert systems and other Al applica-
tions, box and arrow diagram editors, graphical programming languages, game
user interfaces, simulation and process monitoring programs, user interface con-
struction tools, CAD/CAM programs, etc. Garnet is in the public domain and
is freely available. As of fall, 1992, over 30 projects around the world are using
the system regularly. You can get Garnet by anonymous FTP from
a.p•. cs. cmu.edu. Change to the directory /us r/garnet/garnet/

Garnet Use of Demonstaton .70

and retieve the README file for instructions. Or you can send electronic mail
to garnet•cs.cmu.edu. Garnet stands for.Generating anArmalgam of
Realtime, Hovel Editors and Ioolkdts.

One of the important goals of the Garnet project is to allow all aspects of the
user interface to be created without conventional programming. In particular, we
want to allow the user to draw example pictures to show what the user interface
will look like, and then demonstraze how the user interface will respond to in-
puts from the end user As a result, demonstrational techniques are widely used

in Garnet, mainly in the various higher-level tools. This chapter discusses some
of these. Other papers about Garnet discuss tne overall design [Myers 90d], the
components, the programming style [Myers 92a] (Myers 92f], and there is a
complete reference manual (Myers 92b].

•• The Lapidary user interface tool allows the pictorial aspects of programs to be
specified graphically (Myers 89b] [Vander Zanden 91b]. A "Lapidary" is a
workman who cuts, polishes and engraves precious stones, and here is a LiJsp-

Based Assistant for Erolotyping Interface Qesigns Allowing Remarkable Xield.
In addition, the behavior of these objects at run-time can be specified using
dialogue boxes and by demonstation. In particular, Lapidary allows the designer
to draw pictures of application-specific graphical objects which will be created
and maintained at run-time by the application. This includes the graphical

entities that the end user will manipulate (such as.the components of the
picture), the feedback that shows which objects are selected (such as small boxes
around an object), and the dynamic feedback objects (such as hair-line boxes to

show where an object is being dragged). Lapidary is a direct descendent of
Peridot (chapter 6) and extends a number of Pendot's ideas.

71. Second Garnet Compendium

(a) Box CeOutSauig Menu

(b) •L

(d)

In addition, like Per'idot. Lapidary supports the construction and use of "widgets" Figrev 1.: The workspace window of
(sometimes called interaction techniques or gadgets) such as menus, scroll bars. /.idr (b) w/ a node of a graph

editor is being created, along with the

buttons and icons. Lapidary therefore supports using a pre-defined library of standard commands (a), object menus
widgets, and deining a new library with a unique "look and feel." The run-time (c), a:hd a dialog box/or setting con-

behavior of all these objects can be specified in a straightforward way using srraints on rectangles (d).

constraints and abstract descriptions of the interactive response to the input
devices. Lapidary generalizes from the specific example pictures to allow the

graphics and behaviors to be specified by demonstration.

Graphical objects can be created in a number of different ways using Lapidary.
As shown in Figure 1, the standard menus provide the usual range of graphical

primitives, so objects can be created from scratch.

Gamret Use of Demonstration -72

Constraints
A central feature of Lapidary that makes it appropuiate for creating run-time ap-

plicaton grqaics is the use of constrains. Constraints allow the designer to
specify a relation between a graphic object and other objects in the scene, and

have that relation maintained at rn-tame by the system. If a constraint is one of
a standard set. then it can be specified easily using the Lapidary menus (see

Figua l-d). These menus support having objects be connected on their edges or
in the middle, with optional offsets. The sizes of objects can also be related.

There are different windows showing the constraints for lines and a few other
objects. Experience with Peridot demonstrates that these simple types of

constraints make up the vast majority of those needed in typical user interfaces.

Sometimes, designers want to use relationships that cannot be created out of

these simple choices. In that case, the Custom option is selected, and the de-
signer is allowed to type in an arbitrary Common Lisp expression specifying the
constraint using the C32 system (discussed below).

Unlike Peridot. Lapidary currently does not try to infer the graphical constraints.
Instead, they must all be specified explicitly using the dialog boxes. With
Lapidary, we wanted to concentrate on creating a practical tool that extends the
range of interfaces that can be produced, and the constraint inferencing in Peridot
was felt to be too risky for the first version. Future Garnet tools will revisit
this issue.

In order for the graphical objects to be useful at run-time, the specific constraints
must be generalized to work on run-time objects, rather than on the specific ex-

ample objects used in the editor. For example, in Figure 1. the label on the
nodes should change, but still stay centered, as the node is replicated. Thus, the
constraint, need to be generalized to reference objects indirectly through
variables, rather than by using specific object names. To do this, the reference
to the object is replaced with an expression that calculates the desired object, and
stores it in a special slot. The constraint system then automatically ensures that

the constraints change whenever the slot is set with a different object

It is important to emphasize that Lapidary makes these transformations automat-
ically. The user interface designer never sees any of the code. Even if the de-
signer created custom consaints by typing Lisp code, the references in the ex-
pression can be to example objects (selected by pointing at them with the

73- Second Garnet Compendium

mouse), and the system will convert these references to be general variables
whe= appropriate.

Another way that Lapidary generalizes from the examples is to automatically
make copies of objects at run-time. For example, to show the selection in a
drawing editor, the designer might draw a single set of selection handles around
an example object. However, at run time, multiple objects might be selectable,
so Lapidary arriages for the selection handles to be duplicated at rn-time if nec-
essary.

Interactive behavior
Although it is useful to prototype the graphic appearance of user interfaces, it is
much more useful if the interactive behavior can also be specified easily.
Lapidary therefore provides this capability. In order to edit the behavior of
objects, or to add behavior to new objects, we have encapsulated a number of
kinds of interactive behaviors into "interactor" objects [Myers 90c), each of
which has its own dialogue box for specifying properties. For example, to
change which mouse button operates a menu, it is only necessary to change the
button indicated in ite dialogue box.

Often, there will be a specific object that serves as the feedback for an operation.

For example, a reverse-video rectangle might move over the items in the menu
to show which is the current selection. In other cases, the objects themselves

should change to be the feedback. For example, the currently selected item in a
menu might be shown in italics. Another use is to have buttons move to cover
their shadows (and therefore look more "3-D"), as in the Motif and Garnet look
and feels. In this case, the desired changes can be shown by demonstration. To
specify the changes by demonstration, first the designer selects the objects that
will change, and then hits a button in the dialogue box. The full current state of

the selected objects is remembered. Next, the designer edits the objects in
whatever way desired, for example to make the string be italic. Then, another

button is hit, and Lapidary creates a constraint that will choose between the two
values based on whether the object is selected or not. Changes can be made to as
many properties as desired, and correct constraints will be created for all of them.

Summary
Through the use of demonstrational techniques, Lapidary is able to allow the de-
signer to interactively create far more of the user interface than any other tool.

Gamnet Use of Demonstration .74

In particular, new widgets and application-speciric objects can be created.
Demonsuauonal techniques are crucial since these objects all ar parameterized
and will change dynamically at run time, so it is only possible to draw exam-
pies, not the actual objects to be used. These examples generalized into named
prototypes which the applications can then make instances of at run time.

SWhen the iconic menus in Lapidary are not sufficient for specifying the desired
constraints, Garnet provides the C32 spreadsheet program to help enter more
complex constraints [Myers 91a]. C32 can also be used stand-alone. It displays
and allows the user to edit any kind of object and constraint, no matter how they
were created: by hand-coding, by using Lapidary, or by using C32. C32 stands
for CMU's Clever and Compelling Contribution to Computer Science in
Common Lisp which is Qustomizable and Characterized by a Complete
Coverage of Code and Contains a Cornucopia of Creative Constructs, because it
Can Leame Complex, Correct Constraints that arm Constructed Clearly and

Concretely, and are Communicated using Columns of Cells that are Constantly
Calculated so they Change Continuously and Cancel Confusion.

Figure 2 shows a typical instance of C32. Each column contains a separate ob-
ject. Rows are labeled with the names of the slots, suchas :lef t, :top,
: width, : height, : visible, etc. Since different objects can have dif-
ferent slots, the slot names are repeated in each column. For example, lines
have slots forthe endpoints (:xl, :yl, :x2, :y2) but rectangles do not.
Also, each object's display can be scrolled separately, so each has its own scroll
bar. This makes the spreadsheet look somewhat like a multi-pane browser as in

Smalltalk.

75 - Second Garnet Compendium

C2:_:1 C32: :fl2.__ C323

• ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ *

2igr, !2: inn C2 ftg e
*tg-A ?-Yr_ (OPT ~T.~ IN .- Lw'.Jf

'• •
jiects (b). The scroll bars can be used

D ~tO see more slots or coltgmras
eChanging the window's size will

change the nwmber of slots and ob-

_ _j e c rs d i s p l a y e d (t h e n u m b e r o f r o w s
and columns). Field values are

(b) dlipped if the-y are too long, but can

be scrolled
sing editing commands.

The spreadsheet cells show the curret values of the slots. If a value changes. The "F" ico men t the slo value

then the display will be immediately updated. If the user edits the value in the as computed with a formula. All in-

spreadsheet ceil, the object's slot will be updated. The "F" icon by some slots herited slots are shown in italics and

Fignmarked with the "1" icon. When a

ieformula is ihTeried the value is

mouse on the icon causes the constraint expression to appear in a different win- shown in a regudlarfonm since it is ussa-

dow. The expression itself can be edited by typing or other techniques, ally different from the protoypeos.

The inherited
icon is also shown next

U s @ o f In fe re n c ln g
to th hefo rm u la ico n r ath e r ahan ne xt to

It is sometimes not convenient to read an object into a spreadsheet column just the value.

to generate a reference to it. Therefore, a command wil place into the current

formula a reference to any object in a Garnet window. However, selecting a

graphical object does not specify which slot of the object should be referenced.

In one mode, the user must type this directly or select a slot from a menu.

However, the oer mode uses heuristics to guess the slot from the example by

looking at the slot being villed and where the mouse is pressed in the selected ob-

ject. For example, if the slot is :le ft, and the mouse is pressed at the right of

an object, then the reference will be to the right of the object. For the :width

Garnet: Use of Demonstration -76

slot, however, the same press would generate a reference to the width of the ob
jeCL Unlike Peridot, C32 does not try to confirm any of the inferences, but
rather simply inserts the text into the formula. If the guess is incorrect, it is
easy for the user to delete the text and type the correction.

Once a complex formula is created, it will often be needed in a slightly different
form for a different slot or a different object. As an example, suppose the user

has constructed a constraint that centers an object horizontally with respect to
two other objects. Now, suppose the programmer wants to center the object ver-
tically also. The formula could be copied to the : top slot, but all the slot ref-
erences need to be changed (: left to :top and : widt h to :height).
Therefore, when a formula is copied, C32 tries to guess whether some slot
names should be changed. This uses a few straightforward rules based on the
slot names of the source and destination slots. Currently, these rules are hard-
wired into the code. If it appears that slot names should be changed, the user is
queried with a dialog box, and if dte answer is OK, then the formula is modified
automatically. Since this is a more radical change than the inferred slots dis-
cussed in the pev-ious section, it seems prudent to require confirmation.

Automatic generaliaation
Another possibility is that the references in the formula should be generalized
into variables. C32 therefore provides a command that will change the entire
formula into a function that takes the objects and/or slots as parameters. The
user can choose the names for the function and for the variables. C32 will gen-

eralize objects, slots, or both.

The intelligent copying and generalizing in C32 helps the user generate correct
constraints by example. Without these aids, it is quite common to forget to
change one or more of the references when formulas are copied. Generalizing
also helps the programmer decrease the size of the code by promoting the reuse

of existing formulas.

...... Gilt is an interface builder that allows dialog boxes and other windows to be

created interactively by choosing widgets from a palette and putting them into a
window using a mouse [Myers 91d]. Gilt is similar to many other interface

77.- Second Garnet Compendium

builders. including the NeXT Interface Builder, Prtotoyper from SmethersBames
for the M.intosh, etc. Gilt stands for th QprnrA interface Layout fool.

Demonstrational techniques have been added to Gilt in two places: to infer graph-
ical styles from examples, and to infer transformations of data and dependencies
to minimize the number of call-back p•rcedures.

Graphical styles In Gilt
In most toolkits, the widgets have many properties that the designer can set,
such as the color, font, label string, orientation, size, the minimum and
maximum values of a range, etc. Many widgets in the Motif widget set, for
example, have nearly 50 different properties that can be set. Most interface
builders, including Gilt, provide "property sheets" that allow the designer to
specify the desired values. However, it can be quite difficult and time consuming
to find and set all of the appropriate properties. To show the ,aagnitude of the
problem, many applications contain over 2000 widgets, and t!fe properties for
each must be set in a consistent manner. A study has shown that achieving
consistency in an interface is a frequently cited problem [Myers 92c].

Another problem for interface designers is laying out the widgets in the window.
When the designer places widgets with the mouse, they tend to be uneven and
look sloppy. Therefore, most builders provide grids and alignment commands.
However, these can be clumsy to use, and they do not ensure that different dialog
boxes will have a consistent alignment (for example, that the titles are always
centered at the top of the window).

To help solve these problems, Gilt introduces the notions of Graphical Tabs and
Graphical Styles into an interface builder, which are more completely described
in (Hashimoto 921. These are based on the styles and tabs in text editors such as
Microsoft Word. A "graphical tab" is simply a horizontal or vertical position in
the graphics window to which objects can be aligned. A "graphical style" is a
named set of properties, which can be applied to widgets. The designer can edit a
widget so it has the desired properties, select it, and then define a named style
based on it. The values of the properties and the positions of the widgets will be
associated with that style name. The style can then be applied to other widgets.

Furthermore, Gilt will try to automatically guess when to apply a style, so the
designer does not have to. By guessing the appropriate properties and layout,

Gamnec Use of Demonstration -78

Gilt makes the user interface design process significantly faster, since users can

quickly and imprecisely place widgets, and the system will autonatically neaten
them. Since the inferencing is based on the styles the user has defined, rather
than based on global, default rules, as in earlier systems like Peridot and Druid
[Singh 90], the inferred propertes and positions are more likely to be Correct.

These feanures in Gilt an classified as "demonstrational" because the user defines

a style by example on a particular widget, but the style is automatically general-
ized so it will work on any of a set of widget types.

A graphical style includes a set of widget properties, and optionally some posi-
tion information as well. To create a new style, the designer modifies a widget
to the desired appearance using the conventional property sheets, selects that
wi'iget, and then issues the Define Style command. The designer must
then type a style name into the Style editing window that will appear. Gilt
compares the widget's current properties with the default values for that widget
and copies all that are different. Styles can also include position information.
For example, a designer might specify that objects with the Main-Title-
Style should use a large bold font, and be centered at the top of the window.
The position information for styles can either be with respect to a graphical tab

stop, or relative to a previously created object.

Inferring styles

Although the styles mechanism as described above is already quite useful, Gilt
goes further and tries to automatically determine when a particular style is ap-
propriate. The style control window (Figure 3) provides three options: no infer-
encing of styles, styles applied immediately when they are inferred, or a prompt-
first mode where the designer is asked if the style should be applied, as in Peridot
and Druid [Singh 903. If the system usually infers the correct style, then the

immediate mode will be the most efficient.

79- Second Garnet Compendium

L .en : jR/usr/bam/cmu-styes a

Guessing: ' ON • Imediate.

V Prompt First
CS1 T

Set Style I Define Style] EditStyle I Edit TabStopi

Try Again Undo I

Style of Selected Object: Main-Title-Style

When inferencing is on, Gilt tries to infer a new style whenever a widget is cre- Figure 3: The main style control

ated or moved. The algorithm looks for styles that affect the same type window. Ths allows stles to be read
and written to a file, and style guess-

widget, and, if the style has a position component, then it checks how close the ing to be turned on and off. Also. the

widget matches the style's position. The types that styles are associated with style of the selected object is always

include strings, button objects (including radio buttons and check. boxes), nu- echoed at the bottom of the window

meric sliders (including both sliders and scroll bars), text input fields, etc. A list

is created of all the styles that match, sorted from most likely to least likely.

Any inferencing system will sometimes guess wrong. Thus, it is important to
provide appropriate feedback so the users are confident that they are in control
and know what Gilt is doing. In immediate mode, the first style on the style list

is immediately applied to the graphics, and the name of the style is shown at the
bottom of the style control window (Figure 3). The widget will also jump to
the inferred position and change appearance. If the inferred style is not correct,
the designer can hit the "Try Again" button, which will remove the guessed style
and instead apply the next style in the sorted list. This can be repeated until
there are no more styles in the list. The "Undo" button can also be hit to

remove the guessed style, and return the widget to its original position and
properties. In prompt-first mode, the sorted list of all the inferred styles is pre-

sented in a window, with the most likely selected. The designer can select a dif-

ferent style, if necessary, and then hit OK or Cancel. When a style is defined, it
immediately becomes a candidate for inferencing. This is very useful when a
number of widgets will all be created using the same style.

Gamer Use of Demonstration -80

Editing styles
When a style is applied to a widget, either explicitly or inferred. Gilt sets up
apprDpriate pointers and back pointers so that if the style is ever edited, all
widgets using that style are immediately updated.

Styles can be edited in two ways. A property sheet can be displayed which
shows the current values of the properties for the style, and this can be edited di-
rectly. This property sheet has the same format as the ones for the standard wid-
gets. The positions associated with the style can be edited using the appropnate
dialog boxes.

Alternatively, the designer .an edit the styles in the same way as they were cre-
ated: by working on example widgets. Whenever a widget is edited that has al-
ready been defined to be of a particular style, Gilt pops up a dialog box asking if
the edit should change the style itself. The other alternatives are to make the
widget no longer belong to the style, or to cancel the change and return the ob-
ject to its appearance before the edit was attempted.

In the future, we plan to add the ability to have objects use a particular style
with exceptions, but this is a complex problem (Johnson 881. Some of the is-
sues are whether to copy the attributes or retain the link to the original style,
what to do to a style when the style it inherits from is changed, and whether to
save the inheritance links in the style files, or write out all the style information
to each file.

Minimizing call-back procedures in Gilt
Conventional toolkits today require the programmer to attach call-back proce-
dures to most buttons, scroll bars, menu items, and other widgets in the inter-
face. These procedures are called by the system when the user operates the wid-
get in order to notify the application of the user's actions. Unfortunately, real
interfaces contain hundreds or thousands of widgets, and therefore many call-back
procedures, most of which perform trivial tasks, resulting in a maintenance
nightmare. Gilt allows the majority of these procedures to be eliminated [Myers
91d]. The user interface designer can specify by demonstration many of the
desired actions and connections among the widgets. so call-backs are only needed
for the most significant application actions. In addition, the call-backs that
remain are completely insulated from the widgets, so that the application code is
better separated from the user interface.

8.-,_ Second Garnet Compendium

We have observed that many of the call-back procedures are actually used to filter

the values from widgets and connect widgets to each other, rather than to perform
real application work. By identifying some common tasks that call-backs are

used for, and providing other methods for handling the tasks, we have been able

to eliminate the need for most calh-backs. The tasks can be classified into the
following categories:

Preparing the data for applications. Often, call-backs are used to
convert the values that the widgets return into a form that the application
wants. This may involve converting the type of a value, for example

from a string to an enumerated type, or it may involve combining the
values from multiple widgets into a single record sructure.

Error checking. Before the data is passed to the application, some error

checking of it is often needed, along with appropriate messages when

there is an error.

Preparing data to be shown to the user. Another set of procedures
is usually needed to set the widgets with appropriate dciault values,

which are often dynamically determined by the application. For exam-
ple, when a color dialog box is displayed, the widgets in it will usually

need to be set to the color of the currently selected object. In some

cases, it may even be necessary to change the number of widgets in the
dialog box each time it is displayed, for example, if a button is needed

for each application data value.

Internal control. Many call-backs are used to control connections be-

tween user interface elements, which require little application interven-

tion. For example, these procedures might cause a widget to be disabled

(gray) when a radio button is selected, or cause one dialog box to appear
when a button in another is hit.

Gilt provides a standard style of window that allows the filter expressions to be

entered. The goal is to minimize the amount of code that needs to be typed to

achieve the required transformation. Therefore, much of the filter expression is

generated automatically when the designer demonstrates the desired behavior.
Other parts can be entered by selecting items from menus. As a last resort, the
designer can type the required code. If a call to an application function is neces-

sary in a filter expression, Gilt makes sure that the procedure is called with ap-

Gar•nt Use of Demonstration -82

propriate high-level parameters, rather than such things as a widget pointer or the

sting labels. Th-e, ": call-backs that remain are completely insulated from the

user interface.

Gilt tries to automatically pick the appropriate transformation. There are two

techniques used to guess what is appropriate. First, the designer can type an ex-

ample value into the Resulting Filtered Value field at the bottom of

the Exported Value Control window (Figure 4-a). In this case, Gilt

will try to guess a transformation that will convert the current unfiltered value

into the specified value. If none of the built-in transformations is appropriate,

then Gilt creates a case statement. The designer can then operate the widget to

put it into different states (and therefore to change the unfiltered value), and type
the desired filtered value for each case. This allows arbitrary transformations

(e.g., converting the German "Fettdruck" or the French - Gras" to

:BOLD). The resulting code for the filter is shown in the Filter

Expression window.

The second option is used when the designer enters a procedure into the fiter ex-
pression, and then selects a widget to supply the value to a parameter of the pro-

cedure. Here, Gilt tries to find an appropriate transformation so that the widget
value will be filtered into the required type of the parameter. A V a I u e

Control window will pop up to confirm each transformation, and also to re-

quest the designer to specify the transformation if Gilt cannot infer it.

The user can check that the filter expression is achieving the desired result in two
ways. First, the interface can be exercised to test the code. Second. the

Filter Expression field shows the Lisp code that is being used. In the
future, we will be investigating other techniques for showing the transformations

that will be usable by non-programmers. For example, the filter expressions
might use normal arithmetic expressions, or we might create a special graphical

programming language.

83- Second Garnet Compendium

Exported VAlue Control for " MStandard Pont: Figur. 4: (a) The Gill window that
allows the designer to control how

Outl~tez." Vias *Stadard taritz' cc ftvlY I a valuesfor widgets are filtered. Many
of. th field are filled in by Gilt as the

Filtr Upesson:L" Valu ofOb act esinerdarinartesthe desired be-
-261 :vaue)havior. The Llnfilcered Value

(a) ~ ~ :vla shows the value as currently provided
by the widget before any filtering.

...... The Fiter Express lon is the Lisp
.*k exression to filter the value. The de-

~ul±~1±t~g V~.m: "tadad ront. si gner can hit the Use Val1ue of
"Mating___Filtered ___Value___________ Error_________ ob jac t button to insert a reference to

the value of a selected object. The de-
Exported Value Control for "Standard Pont:" fault filter simply copies the original

- ~value. The Result ang Filtered
OWiltared Valuen: "Standard font:" OR Apply I.±l'Val uefield shows the final value af-

- ype error In paranever Us Vau ofOjet ter the filtering. This field can be
Filte iB',Ot edited to show the transformotion for

b cgv andaY :fontmrdvl the current widget by example. (b)
W(9 AIY:itrdvle shows the filter expression after a

(QV ACE filoredvaile)function has been selected from a
(qv IZE:fitere-voue)menu and the widget ref erences have

P_ .7 .7 .7been filled in. (e) shows the addi-

Pleault~ng Filtered Val~ue: I NIL Ero hokuoita windo'ws that appear to confirm
the transformations that are inferred
for the widgets that are referenced in

Exported Value Control for "Standard Font:" (b).

(C (GllJiAk.t~oye-r (qv :"If :valuel)

Gamec Use of Demonstration -84

For enabling and disabling widgets, similar techniques are used. One of the
most common dependencies is to anable and disable widgets based on the values
of oher widgets. To specify this, the designer can operate a widget to have the
puxopr ale value, then enable or disable the dependent widget, and Gilt will fill

in the values for the Change my Enable expression. In utying to guess ap-
propriaze control expressions for dependent slots, Gilt knows about check boxes
and radio buttons being on or off, text fields being empty or having a value, and
numbers being zero or non-zero. In addition, if the Change my Enable
window is for a set of selectable items (such as a menu or a panel of buttons),
the controlling widget can return a list of values, each element of which controls
an item.

All the other properties of widgets can be controlled in the same way as en-
abling. Widgets can be made to be visible and invisible by bringing up a

Change my Visible window. Similar windows control properties such as
color and font.

To edit the value of any of the filter expressions for a widget, the designer can
simply select the widget and bring up the appropriate Con t r ol. .. or
Change my... window. The designer can then edit the text of the expres-
sion. Alternatively, if the user demonstrates new transformations, these will re-
place the existing ones as appropriate.

.:. ... Jade creates dialog boxes from just a list of their contents [Vander Zanden 90). It

uses general rules from graphic design as well as look-and-feel-specific rules in
order to create a pleasing presentation. Jade is useful when an application

contains a large number of dialog boxes (so that using Gilt would be
inconvenient), or when the contents of a dialog box is not known in advance so

the dialog box needs to be dynamically generated (so using Gilt would be
impossible). Jade stands for the •JugjM-based Automatic Dialog Editor.

The demonstrational aspect of Jade is that it will automatically generate the rules
that control the layout from examples of the desired picture. An interactive edi-

tor is being created that will allow the designer to show the system how the in-
terface should look. This part of the system is still under development.

85- Second Garnet Compendium

Garnet contains built-in support for interfaces including gesetres. A gestural r.
interface uses the path that the mouse goes through in order to determine the
command. For example, the user might draw an "X" over an object to cause it
to be deleted, or an "L" shaped motion might mean to create a new rectangle.
whereas a circular motion might mean create a new circle. The gesmral mecha-
nism in Garnet uses an algorithm that is trainable [Rubine 91a]. This means
that the designet gives examples of the desired gestures, and the system uses
statistical techniqaes to match the end-user's gestures against the examples to
decide which gesture the end-user is giving.

Unlike Peridot, the goal in Garnet is not specifically to investigate demonstra- M w Iieaned
tional techniques, but rather to create a usable and efficient collection of tools to
create user interfaces. However, we have found that demonstrational techniques
are very effective for extending the boundaries of what can be accomplished by
direct manipulation. Inferencing is used in most of our demonstrational sys-
tems, but it is not particularly sophisticated. In all cases, just one or two rules
are needed to decide how and when to generalize. All the techniques are applica-
tion-specific and ad-hoc, which suggests that some general-purpose toolkit con-
taining demonstrational techniques would probably not be helpful. As with
other demonstrational interfaces, the primary problems in Garnet have been how
to provide appropriate feedback for the generalizations so the users are comfort-
able with them, and how to allow editing. In most cases, the technique used cur-
rently is just to'show the Lisp code that was inferred, and require that the user di-
rectly edit the code, but we plan to investigate more sophisticated methods in the
future.

The Garnet research is sponsored by the Avionics Lab, Wright Research and ACknowfedgmenls
Development Center, Aeronautical Systems Division (AFSC), U. S. Air Force,
Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465,
Arpa Order No. 7597.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

Garnet: Use of Demonstation -86

I BRAD MYERS

[Hashimoto 921 Hashimoto, 0. and Myers B.. '"Graphical Styles For Building User
Interfaces by Demonstration," ACM Symposium on User Interface Software
and Technology, Monterey, CA, Nov. 16-18, 1992. pp. 117-124.
Reprinted in this technical report.

[Johnson 88] Johnson J. and Beach R., "Styles in Document Editing Systems," IEEE
Computer, Vol. 21, No. 1, IEEE, January 1988, pp. 32 - 43.

[Myers 89b] Myers B., Vander Zanden B. and Dannenberg R., "Creating Graphical
Interactive Application Objects by Demonstration," Proceedings of the
Symposium on User Interface Software and Technology. ACM SIGGRAPH.
Williamsburg, November 1989, pp. 95 - 104.

[Myers 90c] Myers B., "A New Model for Handling Input," ACM Transactions on
Information Systems, Vol. 8, No. 3, ACM, July 1990. pp. 289 - 320.

[Myers 90d] Myers B., Giuse D., Dannenberg R., Vander Zanden B., Kosbie D., Pervin E.,
Mickish A. and Marchal P., "Garnet: Comprehensive Support for Graphical,
Highly-Interactive User Interfaces." IEEE Computer, Vol. 23, No. 11, IEEE,
November, 1990, pp. 71 - 85.

(Myers 91a] Myers B., "Graphical Techniques in a Spreadsheet for Specifying User
Interfaces." Proceedings of CHI '91, ACM, New Orleans, April 1991, pp.
243 - 249. Reprinted in this technical report,

(Myers 91d] Myers B., "Separating Application Code from Toolkits: Eliminating the
Spaghetti of Call-Backs," Proceedings of the Symposium on User Interface
Software and Technology, ACM SIGGRAPH, Hilton Head, November 1991, pp.
211 - 220. Reprinted in this technical report.

(Myers 92a] Myers B. and Vander Zanden B., "Environment for Rapid Creation of
Interactive Design Tools," The Visual Computer: International Journal of
Computer Graphics, Vol. 8, No. 2, February 1992. pp. 94 - 116.
Reprinted in this technical report.

87- Second Garnet Compendium

(Myers 92b] Myers B., Giuse D., Dannenberg R., Vander Zanden B., Kosbie D., Marchal P.,
Pervin E., Mickish A.. Landay J., McDaniel R. and Gupta V., "The Garnet
Reference Manuals: Revised for Version 2.1," Technical Report CMU-CS-90-
117-R3. Department of Computer Science, Carnegie Mellon University, May
1992.

[Myers 92c] Myers B. and Rosson M., 'Survey on User Interface Programming."
Proceedings of CHI '92, ACM. Monterrey, May 1992, pp. 195 - 202.

(Myers 92f) Myers B., Giuse D. and Vander Zanden B., "Declarative Programming in a
Prototype-Instance System: Object-Oriented Programming Without Writing
Methods." Proceedings of the Conference on Object.Oriented Programming:
Systems Languages and Applications. October 1992. pp. 184-200.
Reprinted in this technical report.

[Rubine 91a] Rubine D., "Specifying Gestures by Example," Proceedings of SIGGRAPH
"91, Vol. 21, No. 4, ACM, Las Vegas, July 1991, pp. 329 - 337.

(Singh 90] Singh G., Kok C. and Ngan T., "Druid: A System for Demonstrational Rapid
User Interface Development." Proceedings of the Symposium on User
Interface Software and Technology, ACM SIGGRAPH, Snowbird, October
1990, pp. 167 - 177.

(Vander Zanden 90] Vander Zanden B. and Myers B., "Automatic, Look-and-Feel Independent
Dialog Creation for Graphical User Interfaces," Proceedings of CHI '90.
ACM. Seattle, April 1990, pp. 27 - 34.

(Vander Zanden 91a] Vander Zanden B.. Myers B., Giuse D. and Szekely P.. "The Importance of
Pointer Variables in Constraint Models," Proceedings of the Symposium on
User Interface Software and Technology, ACM SIGGRAPH, Hilton Head.
November 1991, pp. 155 - 164. Reprinted in this technical report.

[Vander Zanden 91b] Vander Zanden B. and Myers B., "Creating Graphical Interactive
Application Objects by Demonstration: The Lapidary Interactive Design
Tool," SIGGRAPH '91Video Review. Vol. 64, No. 1, ACM, 1991.

89- Second Garnet Compendium

Reprinted from ACM Symposium on User lnterface Software and Technology
Hilton Head, SC, Nov. 1 1-13, 1991. pp. 211-220.

SEPARATING APPLICATION CODE FROM TOOLKITS:

ELIMINATING THE SPAGHETTI OF CALL-BACKS

Brad A. Myers .

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

ABSTRACT toolkits today require the programmer to specify call-backs
Conventional toolkits today require the programmer to at- for almost every widget in the interface, and some widgets
tach call-back procedures to most buttons, scroll bars, even take more than one call-back. For example, the slider
menu items, and other widgets in M intcerface. These widget in Motif has two call-backs, one for when the in-
procedures are called by the system when the user operates dicator is dragged and one for when it is released.
the widget in order to notify the application of the user's
actions. Unfonunamcly, real interfaces contain hundreds or A typical user interface for a moderately complex program
thousands of widgets, and therefore many call-back will contain hundreds or even thousands of widgets. For
procedures. most of which perform trivial tasks, resulting example, the VUIT program from DEC uses over 2500
in a maintenance nightmare. This paper describes a system widgetm. This means that the programmer must provide
tha allows the majority of these prcedur'es to be many caff-back procedutres. To add to the complexity, each
elimiated. The user interface designer can specify by type of widget may have its own protocol for what
demonstration many of the desired actions and connections parameters are passed to the call-back procedures, and how
among the widgets, so call-backs are only needed for the the procedures access data from the widget.
most significant application actions. In addition, the call.
backs that remain are completely insulated from the The use of all of these call-backs means that the user inter-
widgets, so that the application code is better separated face code and the application code are not well separated or
from the user interface, modularized. In particular.

e The call-backs closely tie the application code to a par-
KEYWORDS: Call-Back Procedures, Dialog Boxes, ticular toolkiL Since each toolkit has its own protocol for
UIMSs. Interface Builders. how the call-backs are called, moving an applicaton

from one toolkit to another (e.g.. from Motif to Open-
1. Introduction Look) can require recoding hundreds of procedures.

The Gilt Interface Builder allows dialog boxes and similar * The call-backs make maintaining and changing the user
user interface windows to be created by selecting widgets interface very difficult. Changing even a small part of an
from a palette and laying them out using a mouse. More interface often requires rewriting many procedures. Even
interestingly, Gilt provides a variety of mechanisms to i a graphical interface builder is used to change tie
reduce the number of call-back procedures that are neces- widgets, the call-backs must be hand-edited afterwards if
sary in graphical interfaces. A "call-back" is a procedure widgets are added, deleted, or modified.
defined by the application programmer that is called when e The call-backs often are passed the text labels shown to
a widget is operated by the end user. A "widget" is an the user. so if the natural language ured in the dialog box
interaction technique such as a menu, button or scroll-bar. is changed (e.g., from English to French), the values
A collection of widgets is called a toolkit, Examples of passed to the call-backs will change, requiring the ap-
toolkits are the Macintosh Toolbox, the Motif and Open- plication code to be edited.
Look toolkits for X windows, and NeXTStcp. Most We have observed that many of the call-back procedures
Per•mssion mn copy without fee all or part of this material is are actually used to filter the values from widgets and con-
granted provided that the copies are not made or distnbuted for nect widgets to each other, rather than to perform real ap-
direct commerciMal advantage, the ACM copyright notice and the plication work. By idenufyirg some common tasks that
UtUe of the publication and its date appear, and notice 5i given call-backs are used for, and providing other methods for
that copying is by permission of the Association for Computing handling the tasks, we have been able to eliminate the need
Maochnegv. To copy otherwise, or to republish. requires a fet for most call-backs. The tasks can be classified into the

andtor specific pe•Mnsson.
a 1991 ACM 0-89791-451 - 191/0010/0211... $ following categories:

November 11-13, 1991 UIST'91 211

SeperatinA Application Code from Tooikits -90

Preparing the data for applications. Often, call-backs 2. Related Work
am used to convent the values that the widgets return Of course, there are a large number of commercial and
into a form that the application want This may in- research interface builders that lay out widgets, including
voive converting the type of a value, for xZample from DialogEdior (3], the Protyerw for tie Macintosh (13], the
a sring to an enumerated type, or it may involve com- NeXT Interface Builder, UIMX for Motif, and Dnuid [12].
bainng the values from multiple widgets into a single However, these only have limited mechanisms for reducing
record structu.e call-lbcks. Many of them support transitions from one

Error chdeckig. Before the data is passed to the applica- dialog box to another, and NeXT allows the output value of
ion, some erro checking of it is often needed, along one widget to be connected to the input of another, if no
with appropriate messages when there is an aro. filtering is needed Druid adds the ability to set the initial

values for widgets (but only statically, not application data
Preparing data to be sbown to the user. Another set of dependent) and to collect values of widgets for use as the

procedures is usually needed to set the widgets with lrmaer to a procedure. It allows the designer to specify
appropriaie default values, which are often dynami- some of these by demonstration. However, in Gilt, sig-
cally dctrmiined by the application. For example, nifcantly more of the user interface can be specified with-
when a color dialog box is displayed, the widgets in it out requiring call-backs, the call-backs are mor independ-
will usually need to be set to the color of the currently cnt of the widgets, and a uniform framework is used for all
selected object. In some cases, it may even be nees- filtering.
sary to change the number of widgets in the dialog box
each time it is displayed, for example, if a button is A primary influence on Gilt is the Peridot UIMS [6].
needed for each application data value. Peridot was the first system to allow the designer wo specify

Internal control. Many call-iacks am used to control con- the behavior of the interface by demonsuton. Gilt uses
nectons between user interfac elements, which re- some of the techniques in Peridot to guess the appropriate
quire little application intervention. For example, transfrmatons based on the example values.
these proccdures might cam a widget to be disabled -
(grey) when a radio button is sckted, or causm one The fte expressions that the designer specifies in Gilt ar
dialog box to appear when a button in another is hit. implemented using constraints. A constraint is a relation-

ship that is declared once and then maintained by the sys-
Gilt provides a standard style of window that allows the tern. Consraints have been used by many systems, starting
fdter expressions to be entered. The goal is to minimize with Sketchpad (141 and Thinglab EThinglabToplas). Uses
the amount of code that needs to be typed to achieve die of constraints within user intewrface toolkits include GROW
required transformation. Therefore, much of the filter ex- [I], Peridot (6]. and Apogee [51.
pression is generated automatically when the designer
dmonstrates the desired behavior. Other parts can be en- Other systems have allowed the designer to specify the
tercd by selecing items from menus. As a last reort, te connections between the user interface and the application
designer can type the required code. If a call to an applica- procedures at a high leveL The Mickey system (Ill uses
tion function is necessary in a filter expression, Gilt makes spec-l comments in the procedure definition to describe
sure that the procedure is called with aly opriate high-level the connection to the user interface. The UIDE system
paamitersm rather than such things as a widget pointer or (4] allows the application procedures to be defuied in ad-
the string labels. Thus, the call-backs riiat remain are comn- vance, and generates the interface partilly fiom these. Un-
pletely insulated from the user interface. like t systems, Gilt requires the designer to specify the

graphics, and then explicitly atach the graphics to the
Gilt is a part of the Garnet system [8). Garnet is a com- procedures, but it infers the mapping between the values
prehensive user interface development environment con- reumied by the widgets and he values desired by the
waining many high-level tools, including Gilt, the Lapidary procedures.
interactive design tool (71, the C32 spreudciscet system 191,
ec. Garnet also contains a complete toolkit, which uses 3. Example
constraints (151 and a prototype-instance object model. To show how easy it is to defie• dependencies without
Gilt stands for the Garnet Interface Layout Tool, and it writing call-backs, we will first present an example of
supports interfaces built using either the Garnet look-and- creating the dialog box of Figure 1. There are a number of
feel widget set or the Motif look-and-feel widget set.1 Gilt dependencies in this relatively simple inerface. The return
uses CommornLisp. but the ideas presented here am ap- value of the dialog box is a font objectL If one of the
plicable to interface builder tools using conventional com- standrd fonts is selected, then the coreponding built-in
piled languages. font object should be returned. Otherwise, the return value

will be a font specified by name, so the specified file
should be opened, and a new font object created for that
file.

'bM Md-tur. widiu in Gm a invc,,pauaWAW =p it %be First, the user would create the graphics for the dialog box
Gwm Tooba munna m, do no un m d te X cc& in by selecting the widgetm from a palette and typing in the
C. ANbmo *ay km* w balye Lik tM a M ,i atp. t y correct labels, in the conventioal direct manipulation man-
212 do MWto Hemaad oaa aa s the Gore= Carz WIC=

212 Ut '91 Hilton Head, Suth Carolina

91 - Second Garnet Compendium

* Zsp~orted Value Cont rol for "Standard Pont:-

~ . .U W

'N~~U V41 *Ijrflbject'
21CM

.,~ _ _____ ____W

M foss sltuN, dilgbxb.4 ced nGl hnN au onrlfx"tnadFathe StandardFOntraio IV tni rse.te ~ Um 1L:kaadr. J ~Csi

aidFiur si: ofore Vahe font)o bfcor "isabladd Font:'tItgd-.I

Ae fotsewithiotne dinalrfacox ueildecrsextedi Git.hedsiner ~ ~ ~ IT

Bold/Italicaradi buPons rareo calledis"paees). (b)tftr"liu.'ca a.

T rher dealFvleont eto radio button s issectd the shring labelo
otelcedbuttons Wede willar Fnow (ovrride famisy fandmae ::vorte aMI1tlte Contrl frSaiaz o

ah d value of the Sotana) Fontm dsbranhensea bevh uprA= 'Itw Cotdo f.LJA

showas wth other rslingtexprced value from, the weidgnetrs~ ~ ~ j.,,
thves smeaigu naest the widgetsvle.Te (ehe .aprpithe fon
Bobjectali weed tobllthGilts functiod "faet-)tadabd

"foet soful wale ooasethi ofradom autmenuThs insrs the stin lae
ofuntion slcall intton the wilte exproession. thes procdurae _____ onrlfr SadrdPn:

shudb asdthe value s of the SadrFotbrnhreenstets of widet a_______Vlv__ntolf
undeoriStenar fontbet. Thercfohis, we seingcu the GithreeredYl Cnrlfo V=

shwidgeat sets ansuhitg thored Uevalue-fof-Objecwdgt buto
ine saeas twindw.dgthis insuerTs gcetc fto aplpthpriated font
objects w neeo the calheGlte exresincutionge istndFigred-bFiue2
fothe referencosae tinsefrted in thenu odThes objets where()TeGl idwta lostedsge ocn
selected. These ino Mferneille bxpesston The pitrdcvauresohwvausoridtsaeflrd.ayofheils
theuwidgets whchsosed ar the vausamte asthre deauts vauidets: ar ildi b ta hedsge emntae h
thder Stringdames Fof t the relabels HwevsereGit know thatdrrdbhvirehen~cee au hw
wiget-setsandardfot he Upectsu-o Lisp jeywrd buhtaueatonrl xvie hewde bfr n

gujents intothertnsrig (a kywr" san to filterig Theile xpression, reusin the Lispr 2-.xe2
phereferneixeisred by ah colon, such asjct bold).a Thereoe Gilt wnpesint iter thet valuews the designer tanchitrthe
tellcthat There isamtsachso wit bres to dhefitermied vale of how values for widgetsre buolterd ianser af thefields
sibe wigtswhchsoraon fanor hesms tr e dxporued values toc thivlueolsled obint TyGlta he desinrdmntalte Eier

thestrng ams o th lbel. HweerGil kowstha dsimply ceavopie The oUngiavltee. Thle eshows~n
gentrlswandowd pops uxpet forp each rd ofar the seecedFlteed Valurenl froideld show the widge valure afty
widgents randtherdsgc a hc than thins(a' eyod infre tan s them filtering. TheFis fiel r a bx e editeon isho the Ls x
prforaionsb ar correc, (Fiure as:cl). ifnThereoe deilne can transformationlfor the vaue.rTen weidgnet byn eiamphe.
gel tadditheeional exmplsmth sor epiitl edito dthergenerate pUshote flter exprbessio autter ao finseto as befeenc

code.~ ~ ~ ~~~~~~~t ine thseapeahwvrlhusse usesal slced ofro a menucand obethe widet referelte havter
csbes moneciy, on the nesig er sim plyrhts d VOnalle ofbesim ll coin. the sowsgna thle. adinal w sinosthat
Cothe l windows This wil ass rt eonacht sof that seethed FilStere confir thel washormtws th ial value afterre
wicrdgvets, ofd the weidgner will bheckeywordseasfreired, forns the witrigetMs tha iaelca referdnc ed to sho).h

Nowathen value forrc(Fge2-)Ifnt the otherne branc mustorato ber set. Then wde bxmpeb
deigner sdiinlelec mpltes Otor Fonictl radio theo aendrte bringsflerepesinate untohsbe

upw the vxportedoValue Contrrlc windo for iet. Bye

selecting the get-font-from-file function from a

November 11-13, 1991 UIST'91 213

* SeparatinR Application Code from Toolkits -92

zxmr Check fo: "Other Font:' designer selects the Other Font radio button and hits
the Use Value Of Object builon. This makes the

am-- va o ob=•=J oFont Name enabled (not grey) when Other Font is

is chosen. Similarly. the family, face and size buttons underJoew s" o VIMSl-Prat- 49 row• -141" :"Jw •-S Standard Font am ena•bled when Standard Font
is selected.

it , ln *Dj:II-nWI

I "-- U• IW-,,-FiJ*•" 1I-N ,--- "-s -, 4. Filtering
,t, error C-o, -. Each widget in Garnet will always first compute its default.

value, which is then assigned to the widget's slot (instance

Figure 3: variable) called : VALUE.2 This value can then be filtered
This window allows the designer to specify the handling to derive the value seen by application programs, which is
of =rr values. Whe Other Font's filtered value is Set into the slot called : FILTERED-VALUE. This is ima-
NIL the frir mro siring is printed. aid when Other plemented as a constraint that sets the value of the
Font is the special value :NOT-FONT. the second :FILTERED-VALUE slot whenever the yalue of the
string is printed. Thl Use Value of Object but- :VALUE slot changes. The default constraint simply
ton is used to insert a reference to a selected object, copies the value. Experience has shown that most filter
here, the value of the Font Name widget, which con- expressions are rather short, often only one or two lines.
tains; the current file name. The Another Error Sometimes, it will be necessary to have longer, complex
Check butuon causes another If value is and transformations or access to application-specific
Error String parappear. functionality and data. Here, a conventional text editor

would be used to create a function which will then be

change my ,r-b.1, toa .Proet NM " called by ft filter expression entered with GilL However,
the function will be independent of the particular widgetssee 40"m" w"ta: 011 used sinct.Gilt provides transfonnations of the arguments

A: Vo" , •, .,.. ,,, and return values from the function.

" V As was shown in the example, Gilt provides a number of
"w Jways to specify the appropriate filtering of data and control

.. .. in the user interface, so the application code is independent
_______ ____ __ of the particular widgets used and the label strings shown

S,,t,•-.a.b Va: v ,• to the user. All of these transformations use the same,
standard Control windows shown in the previous ex-

Figure 4: amples. The following sections show how the various
The Gilt window that allows ahe designer to specify that tasks that require call-backs in other toolkits are performedthe enable propertny of a widget depends on other in Gilt.
widgets. When the Expression returns NILi the
widget is shown "grcyed-out."

4.1 Preparing Data for Applications
Many call-backs in widgets simply filter the output value to

menu, then selecting the Font Name widget, and finally convert it to a form needed by the application program.
hitting the Use value of Object button, the designer For example, for Figure I, you might need as many as 13
can specify the appropriate dependencies. Since different call-backs in other toolkits to generate the single
get-font-from-file cxlx:cts a string, no furtier font value to be returncd. In Gilt, dic value of the dialog
transformations are needed. If the font is not found, the box is available in a variable, without requiring a call-back.
get-font-from-file funt. on returns error values, so
the Error Check window is used to specify the handling Unlike most toolkits, Garnet provides values for groups of
of this (Figure 3), The designer types the appropriate error widgets. For example. the default value of a radio button
return values and response strings into this window, set is the name of the radio buuon that is selected, or NIL if

none are. For a set of check boxes (that allows multiple
Next, the value of the entire dialog box is specified as the selections), the value is a list of the selected buttons. The
value of the pair of radio-Lauttons Standard Font aiid innovation in Gilt is that the designer can specify alter-
Other Font, and now the dialog box will return a single native values for widgets. In the example, the value of the
value, computed based on the settings of the widgets. pair of radio buttons Standard Font/Other Font

Finally, the designer noeds to specify when the various will be a font object.

widgets should be disabled (greyed out). First, the designer Many of the desired transformations of the values can be
selects the Font Name text field, and then brings up the achieved by simple type conversions: from strings to
Change my Enable window (see Figure 4). Note that keywods, atoms, numbers, etc. Thezefore, Gilt provides a
this window has the same general form as the Value Con-
trol window, but simply controls a different property of the
widgets (the enable flag rather than the value). Next, the

'All ria nes w Gamu amai with a

214 UIST'91 Hilton Head, South Carolina

93 - Second Garnet Compendium

number of built-in data transformations:
" String to Lisp atorn (e.g. "Bold" to' BOLD).
"String to Lisp keyword (c.g. "Bold" to : SOLD). - ____

" oString to index of item in the set of buttons (e.g. "Sold" mu*-l.
oO to 0).0i ...

" String to number (e~g. "10" tol10). geI ". .
"* Integer range to a different integer or float range. x:6

Similar transformations, would be appropriate for a builder W..
generating other computer languages, like C or Pascal,
which might automatically create enumerated types, sets. *,bit vectors, or named constants. •N:&J U j'• :

Gilt tries to automatically pick the appropriate transfor- i. .' -•i
mation. There are two techniques used to guess what is
appropriate. Figure 5:

Fmst, designer can type an example value io tThe color selection dialog box created using Gilt
(natually, this is in color on the screen). There me a

Resulting Filtered Value field at the bottom of number of dependencies among the widgets that were
the Exported Value Control window (Figure 2-a). defined by demonstration. If one of the color buttons on
In this case, Gilt will try to guess a transformation that will the left is selected, the sliders adjust to the appropriate
convert the current unfiltered value into the specified value, position for that color. if the sliders are mnovedl the
using the above rules. If none of the built-in iransfor- highlight in the color buttons (here shown around
mations is appropriate, then Gilt creates a case statement. Motif-orange), goes to the appropriate color or
The designer can then operate the widget to put it into goes off. The rectangle in the upper center always
different states (and therefore to change the unfiltered shows the current color. The filtered value of the rec-
value), and type the desired filtered value for each case. tangle is its color, and the value of the dialog box is

This allows arbitrary transformations (e.g., converting the defined as the filtered value of the rectangle.
German "Fettdruck" or the French "Gras" to
:BOLD). fTe resulting code for the filter is shown in the requests the designer to give an example of the value the
Filter Expression window. function would return.

The second option is used when the designer enters a pro- Sometimes, the value of a widget might be computed based
cedure into the filter expression, and then selects a widget on the values of multiple other widgets. In the example of
to supply the value to a parameter of the procedure. Here, section 3, the value cf the St'andard Font radio button
Gilt tries to find an appropriate transformation so that the is computed based on the values of three sets of buttons.
widget value will be filtered into the required type of the The default expression creates a list out of the values, but
parameter. This is the technique used in the example. AValue Control window will pop up to confirm each by editing the filter expression, it is easy to create a record
uansformationl and also to request the dcsigner to specify or structure instead of a list, or to process the values inthe transformation if Gilt cannot infer iL various ways. In Figure 2-b, the get -standard-font

routine is called on the values of three widgets to return a
A number of standard procedures are provided in a pop-up single font object.
menu, so the designer can often select a procedure for the Gilt allows decorations to be added t 'M dialog boxes,
filter expression rather than typing it. The provided such as rectangles, lines and labels. These normally do not
routines will transform a suing into a file pointer, a string have a value, but they can be given one using a value
into a font pointer, numbers or a struing into a color, have a vor ba e the ren tang a vhe

keywords into a font, etc. If one Of these is selected from Control window. For example, the rectangle at the up-keywrdsint a ontetc Ifoneof heseis leced rom per center of Figure 5 shows the current selected color.

the menu, the appropriate code is entered into the Filter The value of this rectangle should be its color. To achieve

Expression field. Because these routines take abstract The desigecantye sgl b self C o invo

values as parameters, and return a value of the appropriate this, the designer can type (gv : self :COLOR) into

type (such as a font object), the implementauon of the the Filter Expression field.3 To make this a little
routines is entirely independent of the widgets. In fact, easier, the designer can choose the desired field of the

standard, built-in routines, such as the Lisp function selected object from a pop-up menu.

probe-file, can be used in many cases. The user can check that the filter expression is achieving

Gilt can execute the filter expressions, including any the desired result in two ways. First, the interface can be
exerciscd to test the code. Second, the Filter

procedures entered by the designer, by using the Lisp inter-

preter. Therefore, when Gilt is put in "run-mode" the Express ion field shows the Lisp code that is being used.
actions will happen just as they will for the end user. Gilt
first checks to make sure that all procedures arc defined, in
case the designer has entered an application-specific proce- 3gv swmids tea "get value" and o look, in due specified object the ie
dure that is not implemented yet. In this situation, Gilt specdid sot.

November 11-13, 1991 UIST'91 215

Separating Application Code from Toolkits -94

In the future, we will be investigating other techniques for Change my Value for -'oCd-@o--thor-lfonC
showing the tansformations that will be usable by non-
pogramme. For example, the filter expressions might ,=J .. I c

use normal arithmetic expressions, or we might create a 406, C V4, at o ..
special graphical programming language. (it

4.2 Error HandlingCall-back procedures in other toolkits are often used to ... -.

check for error values especially in text input fields. Gilt *,..maq waa80.: ,t.f:"
provides a standard error-filtering mechanism that min-
imizes the connections between the error checking code Figure 6:
and the widgets. The designer can bring up the Error The Gilt window to cause die displayed value of a
Check window (Figure 3), and type a value into the if- widget to change based on other widgets. Here. the
value-is field. If the filtered value for the widget is Standard Font/Other Font radio buttons of
ever equal to the i"ý-Valule-1s value, then an error has Figure 1 are set based on the value of the parameter.
occurred. If the Error String field contains a smng, The designer only had to select the is-a-standard-
then a error dialog box is popped-up showing that smog. font procedure from a menu. the rest of the expression
The suing can embed references to other widgets using the was entered by Gilt as the widgets in Figure 1 were

Use-Value-of-Object button, for example, to show operated.
the incorrect value. Alternatively, if the Error String
field contains an expression or function call. then it is ex- for the parameter. If an application wants to display a
ecuted. window designed in Gilt, it can simply call 4

Alternatively, an expression using the value of dhe widget (Show-Dialoq diaeLog-amparaw pwrl .i2 ...)

can be entered into the if-value-is field, which should For example, the font dialog box of Figure 1 would take a
return T if an error should be reported. For example, to single font object as a parameter. Thus, the application
report an error if an input number is odd, the designer could causes the dialog box to appear while still being independ-
simply enter (oddp (gv :sel f ent of how the parameters are used to set the widgets.
:FILTERED-VALUE)). If the filter expression itself
returns an ero message string, then the if-value-is For "modal" dialog boxes (that require the user to say OK
might just test if the filtered value is a string, and the or CANCEL before doing other operations), tae
Error String would just be (gv :self Show-Dialog r-utine will return the value of the dialog
:FILTERED-VALUE). box. The designer can specify the value of the dialog box

using a Value Control window, as was shown in the
There can be multiple if-value-is and Error example. For non-modal dialog boxes, Show-Dialog
String pairs, which would be useful. for example, for a will return immediately, and the designer can aulach a call-
font finding routine that returned different values to tell if back procedure to the OK button. Of course, this call-back
the file was not found, or if the file was not a valid font, as will be passed the filtered value of the window, so it will be
in Figure 3. The get-font-from-file filter will independent of the widgets that are used in the window to
return a font, or NIL if the file is not found, or enter the value.

NOT-FONT if the file is found, but it is not a font.
4.3.2 Using the Parameters

4.3 Preparing Data to be Shown to the User To set the value of a widget based on the parameters, the
Most toolkits rcquire that the designer create additional designer uses the Change my Value window (see
procedures to se: the widgets based on application-specific Figure 6). The primary difference from the Value
data. For example, when many dialog boxes are made Control window shown earlier is that here we are chang-
visible, the values of some widgets should be set to a par- ing the value shown to the user, rather than simply filtering
ticular value. If a widget should always have the same the value returned by the widget. However, this window is
value when the dialog box appears, then the designer can very similar to the Value Control window, and the in-
simply supply this value by example, as in other interface terface to the designer is essentally the same.
builders like Druid (121. However, it is very common for
the initial values for widgets to depend on application- The result of the expression should be an appropriate value
supplied data For example, when the font dialog box is for the widget. For example, Figure 6 calculates the soing
made visible by an application, it should reflect the font of
the selected object, or if there is no object selected, then the
current global default The next sections discuss how Gilt
allows this to be specified easily.

4.3.1 Defining Parameters to the Dialog Box
When a window is designed in Gilt, parameters to the win- %1 a language that does not suppon ftunax wth a vanabe numb"er o(
dow can be specified, along with an example current value ,rgumes, a Gihs-ike budder could create a chr(ernt

show-<dtalog-nme> mgmae for each wndowdc•sund.
216 UIST'91 Hilton Head, South Carolina

95- Second Garnet Compendium

dow. The expression in this window is expected to retunCo eyin 32: : • "s:an integer to tell how many copies of the widgets are
MC- m.2: d' des~uL Alternatively the expression can retour a list of

values, in which case, the number of copies depends on the
* l .m u •,"llength of the list. Here, each copy is assigned the ap-

____. popria•t element from the list. For example, w Figure 7.
the application might supply as a parameter to the dialog

(a) box a list of slot names to control how many times the
check box, the label and the text input field are repeated.

4.4 Internal Control
Copying Uma: :.R " :"ef toW In other toolkits, another set of call-back procedures arc

G1 ,.tri'g" :rl often needed to control the setting of the value or 3ther
property of one widget based on me value of another, or to
being up a new dialog box when a button is pressed. The

In nm " next sections discuss how Gilt allows these to be specified
S1 • 1 using fiber expressions.

l cu-"-" d to: I= 14.4.1 Value Dependencies
Sometimes, when a widget is operated, this should cause a
different widget to change its value. For example, when
the user hits on a color button in Figure 5, the sliders

Figure 7: should move to show the appropriate values for that color.
This dialog box (which uses the Gamet widget set in- Gilt provides a convenient mechanism for specifying this
stead of the Motif widget set used by the other figures in using the same Change my Value window as for
this paper), repears the check box. the label and the text having a widget's value depend on a parameter (Figure 6).
type-in field. The conifoiling expression for (a) might
be ((T .LEFT :TOP) (T ;WIDTH :HEIGHT)), The designer selects the widget that should change (for
whee the T comtrols the radio busion the seond ele- example, the red slider of Figure 5). and brings up a
ment is used in the label snd t third is usedas ts Chang* my Value window. Next, the widgetthat it
default for the text input field. The user ca then turn should depend on (here, the color button set) is selected,
on and off the desired slots using the check boxes, ab
typeand the Use-Value-o-Obect button is hi This Will

generate the expression
((v Color-buttons :FILTERED-VALUE}

name of the branch of the radio button to be selected. Of but for the red slider, only the red component of the color
course, designers can simply type in the appropriate code, should be used, so the designer would edit the expression to
but Gilt provides demonsuational techniques to make this be
easier. The designer can operate the widgets to put them (Nwv Colorwbuttone :FILTERED-VALUE :RED.
into the appropriate state, and then give the expression that Now, whenever the color butTons atw operateds the red
will determine when that state is to be used. For example, slider will be set correcty. The other two sliders would be
for the font dialog box, the designer could select the fixed similarly.
Standard Font/Other Font widget, and bring up a Sometimes, widgets may need to be replicated based on the
Change my Value window (Figure 6). Then. the value of another widget. In the Xerox Star and Viewpoint,
Standard Font radio button would be pressed, and menus only show legal values, rather than greying out il-
designer could hittheUse Value of Parameterbut- legal values. For example, in a font-choice dialog box, if
ton. Then, the designer would have to edit the expression different fonts have different sizes available, the com-
to return T when the font was a standard font using the ponents in the menu of sizes must be dynamically changed.
s-a -standard-font procedure. By default` the The Replicate Control window discussed in section

other value of the radio buttons will be used otherwise, so 4.3.3 is used to control this.
nothing is needed for that case. Next, the designer would
bring up Change my Value windows for the other
widgets, such as Font Name, and write expressions to 4.4.2 Specifying Other Dependencies
extract the appropriate information from the font object The previous stctions discussed how the value of a widgct
parameter. can be controlled. In many cases, howevcr, other

properties of widgets may need to be set, such as whether it
Creation or Widgets is enabled or not (grcyed-out). This is handled in a uniform4.3.3 Dynamic retoofWdtsway, using a window similar to the Change my Value

Sometimes, a parameter might specify the number of window sigier to the widge my Value

widgets that need to be created. In this case, the designer window. The designer selects the widget to controlled.

can show by example the set of widgets to be plicated specifies the desired property from a menu, and the ap-

select them, and bring up a Replicate Control win-
dow, which is similar to the Change my Value win.

November 11-13, 1991 UIST'91 217

Separating Application Code from Toolkits -96

4.4.2.1 Enabling
One of the most common dependencies is to enable widgets
based on other widgets. As shown in the example of see-
Lion 3. the designer can operate a widget to have the ap-
propriate value, then enable or disable the dependent !-,
widget, and Gilt will fill in the values for the Change my
Enable (Figure 4). In tying to guess appropriate control
expremssions for dependent slots, Gilt knows about check
boxes and radio buttons being on or oft text fields being
empty or having a value, and numbers being zero or non-
zero. In addition, if the Change my Enable window is
for a set of selectable items (such as a menu or a panel of
buttons), the controlling widget can return a list of values,
each element of which controls an item. For example, in
Figure 8, the menu of font sizes will have a Change My
Enable expression that computes the list of valid font
sizes based on the selected font in the left menu. Although Figure 8:
an application function is needed, the function will be inde- In dtes Motif-style menus. the various font sizes in the
pendent of the particular widgets used, since it will take a menu on dw right become enabl of disabled depend-

font object and return a list of valid sizes. Gilt will ing an the sizes available for dte font that is Selected in
the menu on ahm left.

automatically create an expression to enable the items that
correspind to the values in the list and disable the others.

the value of the buzton that caused the sub-dialog to be
4.4.2.2 Other Properties displayed. Of course. the designer can control this using
All the other properties of widgets can be controlled in the the Value Control for the butuon.
same way as enabling. Widgets can be made to be visible
and invisible by bringing up a Change my Vi3ible If the sub-dialog is not modal, then the end user will be
window. Most widgets also have additional properties allowed to operate widgets in both windows. Gilt supports
which can be set, such as their color or fonL To change the ceass-window dependencies, so that a value in one dialog
color of an object, the Ch4nge my Color window is boxcan depend onavalue inanotherdialog box.
used. For example, to change the color of the red slider
based on the value it returns, the designer could simply 5. Editing and Saving
select the red slider, bring up the Change my Color To edit the value of any of the filter expressions for awindow, select the slider again, hit the Use-value.-of-
window. selecbt det the expressagain, h i on toe b1e-- widget, the designer can simply select the widget and bringObject button, and then edit the expression to We up the appropriate Contr:ol .. or Change my...

(Make-Color (qv :self :FILTERED-VALUE)
a 0) window. The designer can then edit the text of the expres-

sion. Alternatively, if the user demonstrates new transfor-
Using the dependency control on various properties is also mations, these will replace the existing ones as appropriate.
useful for decorations such as rectangles and labels. For
example, the color of the rectangle in the center of Figure 5 Gilt provides a special feature to make it easier to convert
can be madc to depend on the three slidcrs in this way. an interface to a different natural language. Aftcr a value

transformation has been specified, the next time the desig-
4.4.3 Sequencing of Dialogs ner edits the displayed label names, Gilt will pop-up aAnother common internal control action that sometimes gs question to ask if the corresponding exported values should
Aqother commonacks inteornal ctontol e acnontheatsom s rx change also. If the designer says *no', then the value filte
quires call-backs is for a button to cause another dialog box function is automatically changed so that all the new label
to appear. Gilt, like other interface builders, allows this to strings will still produce the same old values, so any code
be demonstrated, by simply operating the button, and that uses the values will not need to be changed.
showing which dialog box should appear. However, unlike
other systems. Gilt also allows the initial values of widgets Other special features make editing the widgets easier. Gilt
in the sub-dialog to be seL Windows similar to the provides a "Replace widget" command, which allows, for
Change mes •.. windows appear that allow the values example, a set of buttons to be replaced by a menu. As
of the parameters to the sub-dialog to be specified based on many of the properties as possible are retained, includingthe values of the parent dialog box. Gilt will automatcally the label names and the filter expressions. In addition, the
create the code to call Show-Dialog in the appropriate filter expressions can be copied from one widget to
way. If the sub-dialog is modal (which is the usual case), another. Finally, because the more complex filter
then the value of the sub-dialog is assigned by default as procedures and application-specific call-backs are called

with abstract parameters (such as keywords), they usually
will not need to be changed when the widgets are edited.

STU sAWe'e va•ue is a number. but we need a color oblject rfor dool We will be investigating other techniques for editing in the
pmlpeny. Make-Color is s umdanl muune Oiat rakes uambert future.
felinommg tise red, green ad blue vaues and rettn, a color object,

21 8 UIST'91 Hilton Head, South Carolina

97- Second Garnet Compendium

As was mentioned previously, the expressions are im- of values and enabling. This might also be helpful as a
plemented as constraints atached to the appropriate debugging tool to show where the dependencies am. Other
properties of objects. Garnet has a built-in mechanism for debugging and maintenance aids will also be added, such
saving any object as a Lisp code file, including all of its as browsers to show all the filter expressions, and the
constraints [101. and this is used by Gill Therefore, all the procedures and global variables used in them. Finally, we
fidter expressions am output automatically along wid, the will add some of the demonsuational techniques from
user interface definition. Since the output is textual Lisp Peridot and Druid that neaten the display as widgets are
code. it is possible for programmers to edit the file directly, drawn.
but we expect this to not be necessary.

8. Conclusion
6. New Kinds of Widgets The Gilt interface builder contains ait number of innova-
The techniques that have been described are not limited to dons that significantly improve the separation of applica.
only the built-in widgets in the Garnet toolkits. If the user tion code from toolkits. By identifying the most common
wants a new kind of widget. then it can be created either by tasks that call-backs are used for, Gilt is able to supply
coding it by hand or using the Lapidary design tool (7]. built-in mechanisms to handle them. Using a standard style
The new widget can then be dynamically loaded into the of window, te designer can enter short filter expressions.
Gilt palcett, and used like any built-in widgeL Because many of the tasks involve straightforward filter-

ing. Gilt can often infer appropriae transformations from
All of the widgets in the Garnet toolkit are controlled examples of the desired output or actions. Even when more
through the same protocol, which includes a specification complex transformations are required, and which use
of what the properties of the widget are and the types of the application-specific procedures, the application code is
properties (string, boolean, integer, list, etc.). This allows completely independent of the actual widgets and the
the appropratc Cont rol windows to be created. For cus- names used in the user interface. Although Gilt is mn-
tom widgets, the designer will need to conform to the stan- plcmented in Lisp, which makes the dynamic execution of
dard protocol. Lapidary has built-in mechanisms to help the entered code much easier, the general techniques are
with this for widgets created using iL The inferencing of appropriate for conventional compiled languages and for
the filter expressions is based on the type of the properties, interface builders for conventional toolkits. Therefore, the
so the demonstrational techniques described in this paper techniques could be readily applied to today's user inter-
can be used for designer-created widgets as well. As an face tools.
example, the color selection buttons on the left of Figure 5
are not a standard widget, but were partially coded by hand The mechanisms that are described here make it much
and then read into Gilt for the dependencies to be specified, faster to build dialog boxes with interdependencies among

the widgets, However, we expect their main advantage to
Another interesting feae is that a set of widgets can be be the improved maintainability of the resulting code. For
saved, along with their interdependencies defined in Gilt, example, it should be much easier with Gilt than most other
and used as a prototype in other interfaces. For example, interface builders to convert a user interface to a different
the Standard Font group from Figure I could be read natural language or switch between different forms of
into the Gilt palette, and then placed in other dialog boxes. widgets (e.g., from menus to buttons), or even different
Due to the prototype-instance object model in Garnet, no widget sets (e.g., from Motif to OpenLook). We will be
extra mechanisms are needed in Gilt to support this. exploring the effects of these features as Gilt becomes

widely used by the Garnet community.
7. Status and Future Work
An earlier version of Gilt has been released to all Garnet Acknowledgements
users.6 The version described here has been mostly im- Andrew Mickish implemented the features described in this
plemented, and is expected to be finished and released in article. Osamu Hashimoto also contributed to the design
the next few months. and implementation of GilL Brad Vander Zanden, David

Kosbie, Andrew Mickish, Osamu Hashimoto, Berita
In the future, in addition to releasing this version of Gilt for Myers, and the referees provided useful comments on this
general use, we would like to investigate combining some paper.
of the features of Lapidary with Gilt, so that the designer
can specify constraints on the widgets, for example to make This research was sponsored by the Avionics Lab. Wright
decorations or the entire window grow if a widget gets Research and Development Center, Aeronautical Systems
bigger. It has been suggested that a wiring diagram ap- Division (AFSC), U. S. Air Force, Wright-Patterson AFB,
proach to specifying the interdependencies among widgets OH 45433-6543 under Contract F33615-90-C.1465. Arpa
might be easier to use. We will investigate allowing the Order No. 7597.
designer to draw wires among the widgets to show the flow

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-

*TM Ganma ystsi is avaelbk fre frman CMU, but you enmd so plied, of the U.S. Government.
hav a lacms, 1f you am mienumased in using Gib and Garnet. plasse
caonc the tma•horarsad dcc6ci c mad ioqarnetocs. cmu. edu.

November 11-13, 1991 UIST'91 219

Separatins Apolication Code from Toolkits -98

References for Graphical, Highly-Interactive User Interfaces: The Gar-
net User Interface Development Environment". IEEE

1. Paul Barth. "An Object-Oriented Approach to Graphi- Computer 23. 11 (Nov. 1990). 71-85.
cal Inewrfaces*. ACM Transacilons on Grapics 5, 2 (April
1986). 142-172. 9. Brad A. Myers. Graphical Techniques in a Spreadsheet

for Specifying User Interfaces. Human Factors in Comput-
2. Alan Boraing. "The Programming Language Aspects of ing Systems, Proceedings SIGCHI'91, New Orleans, LA.
Thinglab; a Constraimt-Oriented Simulation Laboratory". April, 1991, pp. 243-249.
ACM Transactions on Programming Languages and Sys-
temns 3, 4 (Oct. 1981). 353-387. 10. Brad A. Myers and Brad Vxner Zanden. "An Ea-

vironment for Rapid Creation of Interactive Design Toots*.
3. Luca Cardelli. Building User Interfaces by Direct The Visual Computer: Internaional Journal of Computer
Manipulation. ACM SIGGRAPH Symposium on User In- Graphi (1991). to appa.
terface Software and Technology, Proceedings UIST'88,
Banff, Albcrta. Canada. Oct., 1988, pp. 152-166. 11. Dan R. Olsen, Jr. A Programming Language Basis for

User Interface Management. Human Factors in Computing
4. James D. Foley. Christina Gibbs, Won Chul Kim, and Systems, Proceedings SIGCHI*89, Austin. TX, April,
Srdjan Kovacevic. A Knowledge-Based User Interface 1989, pp. 171-176.
Management System. Human Factors in Computing Sys-
tems, Proceedings SIGCHI'88. Washington, D.C., May, 12. Gurminder Singh. Chun Hong Kok, and Teng Ye
1988, pp. 67-72. Ngan. Druid: A System for Demonstritonal Rapid User

Interface Development. ACM SIGGRAPH Symposium on
S. Tyson R. Henry and Scott E. Hudson. Using Active User Interface Software and Technology, Proceedings
Data in a UIMS. ACM SIGGRAPH Symposium on User UIST'90, Snowbird, Utah. Oct., 1990, pp. 167-177.
Interface Software and Technology, Proceedings UIST88,
Banff. Alberta, Canada, Oct., 1988, pp. 167-178. 13. SmethersBarmn, P.O. Box 639, Portland, Oregon

97207, Phone (503) 274-7179. Prototyper 3.0.6. Brad A. Myers. Creating User Interfaces by

Demonwirauion. Academic Press, Boston, 1988. 14. Ivan E. Sutherland. SketchPad: A Man-Machine
Graphical Communication System. AFIPS Spring Joint

7. Brad A. Myers, Brad Vander Zanden, and Roger Computer Conference, 1963, pp. 329-346.
B. Dannenbcrg. Creating Graphical Interactive Application
Objects by Demonstration. ACM SIGGRAPH Symposium 15. Brad Vander Zanden, Brad A. Myers, Dario Giuse and
on User Interface Software and Technology. Proceedings Pedro Szekely. The Imporance of Indirect References in
UIST'89, Williamsburg, VA, Nov., 1989, pp. 95-104. Constraint Models. ACM SIGGRAPH Symposium on

User Interfxce Software and Technology, Proceedings
L. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg. UISr9i. Hilton Head. SC, Nov., 1991.
Brad Vander Zanden, David S. Kosbie, Ed Pervin, Andrew
Mickish. and Philippe Marchal. "Comprehensive Support

220 UIST'91 Hilton Head, South Carolina

99- Second Garnet Compendium

Reprntzed fromn ACM Symposium on User Inzerface Software and Technology,
Monterey. CA, Nov. 15-18, 1992. pp. 117-124.

Graphical Styles for Building User Interfaces
by Demonstration

Osamu Hashimoto BzzdA.Myets
C&C Systems Research Labs. School of Computer Science
NEC Corporation. Carnegie Mellon University
4-1-1 Mfiyazaki, Miyamna-Ku, 5000 Forbes Avenue,
Kawasaki, Kanagawa 216, Japan Piusburgh.PA 15213
aomut• Wf.Lc.nvcco~jp bradmya's@ mcs.mu.edu

ABWMRCT achieve the desired appearance for the user Wilofxae, and is
Caliveumicma interface builders allow the user interface described here.
designer to selec widgets such as menus, buttons and scroll
bars. and lay them mt using a mouse. Aithotigh theme we In most toolkits, dhe widgets have many properties that
c~oceptiallly simple to use, in practice there are a numbler the designer can set. such as the color. font, Label saing,
of problems. Fms a typical widget will have dozens of wanon.u sime die ouimn na and maxitmum values of a
properties which the designer mighz cbma ng surwaing that rage etc Many widgets in the Motif widget set. for
doese properties a= consistent across multiple widgets in a example, have nearly 50 different prperies that can be set.
dialog box. and multiple dialog boxes in an application can Molit interface builders. including Gilt, provide "property
be very difficlt. Second. if the designer wants to change sbieL5 that allow tde deignper to specify ftdoudsred values
the properties. eadh widget mast be edite individuzally. (seo Figur 2). However, it can be quite difficult and time
Thill. Setting the widgets aInd Mu appropuiately in a dialog Cmanuing to find and set all o the appropriate properties.
box can be teiu. Girids and aliginment command are To thow the magnitude of the problem. umay applications
not sufficienti. This paper describes Graphical Tabs and cottaif ow 20= widgets, and the properties for each must
Graphica Sqyle in fth Gilt ioua hakde whic sop al be set un a consistent mamae. A study has shownt that
of these probkLas A "graphical tab" is an absolute positin achieving consistency in an interface is a frequently cited
in a windlow. A "graphical style" incorporates both Property prob*= [91.
and layout information, andl can be defined by example.
named, applied to other widgets. edited. saved to a file, an Another problen for interface designer ;4. laying out the
read fromt a file. If a graphical style is edited. then all widgets in the window. When doe dw~.flner places widgets
widgets defied using that style are modified. In addition. with the mouse, they tend to be ureven and look sloppy.
becaus appropriate styles ame inferred, they do not: have to Thrfr.ms bwfldets provide gils and alignment comn-
be explicitly applied, mands. However. these can be clumsy to use, and they do

not insuro that different dialog boxes will have a consis-
tenut alignment (for exanwile. that die titles will always be

KEYWORDS: User Interface Builder, User Interface Man- centered at the top of tir window).
agement System, Demonstrational Interfaces, Styles. Tabs.
Garnet. Direc Manipulation. Inferencing To help solve thes problems, Gilt introdilces the notions of

Graphicl:4 Tabs and Graphical Styles. These are based on
INTROOUCTOH the styles and Labs in text editors such as Microsoft Word.
Thbe Gilt Interface Builder allows dialog boxes and similar A "graptiicii tab" is simply a horizontal or vertical position
user interface windows to be created by selecting widgets in the graphics window to which objects can be aligned.
from a palette and laying them out by direct maiulto A "graphical style" is a named set of properties and layout
(see Figure 1). Two sets of extensions have been added information, which can be applied to widgets. The designer
to Gilt to make it significantly easier to create thes usr cnei a widget so it has the desired properties. select it.
interfaces. The first set helps elimninate many of the call-back and thenl define a named style based on it. The values of the
procedures which communicate to application programs. properties and the position of the widgets will be associated
This was described in a previous paper(8i. The second se with that style name. The style can then be applied to other
of extensions make it easier and faster for the designer to widgets.
permission to copy without too alt of Part at this material is Frhroe itwl r oatiaia us hnt
granted pfavided that the copii.. are not made at die-ributed for Fulyarthe loe. Gilth weintry toe autmaveticall y guessiwhngt
direct commercial advantage, the ACM Copyright notice and aplthtes o einrde o hv o ygesn
ufit of the publication and its date appeal. .. d noic is doen th appropriate properties and layout. Gilt makes the user
that copying is by permission of the Association for Comtputing interface design process significantly faster. since users can
Maschineiv. To copy otherwise. or to republish. qroexite a toe quickly and imprecisely place widgets, and the system will
aridlot specific poorisaaon.

1992, ACM0-69711-550.X/92/001 1101 17_111S1.O

November 15-18. 1992 UlST792 117

Graphical Siges For Buildint Uls by Demonstration too

mamastcally neaen them. Sines te inferencing is based
a i styles the utr ha defined, rather than based on
gloa. default ride& as in eatier systems like Perido(51 and
Druid(I11. the infused proprtie and positions an more
like.y to be Corzee

A set of styles and tabs can be wrihom to a file to form
a GraphicAl Styl Shee• which ca be used to insure that Poni S -1tlo
mu application have a consistent appearance. If a
styiq is edied, all widgets tha ar based on dig style ar e--J---
ausomatically updated, so that the iterfaces will coaninu to S_
be comnistent. In v. • N* -

Gilt is a pan of dte Gare sysset71. Grnmt is a compre-
mive userw aa development environen contaimin J i, IJrtaua ..11,•,

many high-lkel tools, including Gilt, the Lapidary inter-
active design tool[6]; and others. Garnet also contains a
complete toolkit, which uses a p -wnce object
model, comnaints, and a separation of the behaviors frm
the gaphics. Gilt stands for the Garnet Imnerface Layout
Tboj and it supports interfaces built using either the GarnetW MAoWGdadil
look-md-ee widget an or Mt look-and-fer! widget set.
(MofW-style widgets in Grn ae ipiemeMed on top = a
of the Garnet Toolkit intrinsics and do no use any of the Xtk • i . -
code m, C Alhugh they look and behave like fth standard J
Monti widigets, they have the same procedural interfae as the sa.a *UL*i
Caut widget t.) If you are in in getin Garnet, ,.:...
conac dte seccud author. Gilt use. CommonLisp,. but the s' u
ideas presented her ane applicab to interface budlder tools J.

using conventional compiled languages.J~JE \ G
R RLATED WORK ' _.

Of course, ae are a largI number of commercial and Sam... . . s*.q . !
research interface builders thai lay out widgets, includ-
ing die Protoyper for the Macintosh, UIMX for Motif, e" Del., J AU
DialogEditowrl], tbe NeXT Intuface Builder[14], Druid(11
a n d Y U Z U (1 2 1 . A ll o f th e s e h a v e th e s a m e b a sic st au c tu re : n T * J U ndo
thee are two or more windows. One is the work window To 3j ?rvp. 34 .
where the user interface is being created, and another is the uIIIMS 35
widget window, some-times called the "paletue" containing earn W 14 ixwliate _J ...
the widgets that can be placed. (Typically, in addition to the
standard interaction techniques like menus, radio buttons. s.1*c A ,] aL

check boxes, and scroll bars, there are also decorations like S'a'em. C Kblim:: l-0IRt 1OTI-Ma-333"11
rectangles. line and text labels that can be added to the
pictum In this paper, these are all included when the word
"widger" is used.) The designer selects a widget from the Figure i: Gilt Main Windows
palette and places it in the work window using a mouse. The top is the work window where a dialog box for a text
Usually, the designer can change the position and size of editing applicaton is being defined. The middle window is
widgets using the mouse, and edit other properties using the palette of Garnet Motif gadgets that can be added to the
dialog boxes or property sheets. The builders also provide work window. The bottom window is the main Gilt control
many editing functions such as moving, copying, deleting,and aligning widget~s, and reading and writing to a file, panel containig the Gilt comm~ands. The position and size

of the selected widget is echoed in the text boxes at the left
Paidot[5] guessed aligiuent of graphical objects using of this window.
global rules. Dndd(1] applies a similar technique to widget
alignimnt When the designer adds a new widget in a
window, Druid immediately tries to find other widgets in the
window that the new widget might be aligned with. For
example, when the designer creates a label below another
existing label, Druid guesses that the new Iabel and the

11 8 UIST'92 Monterey, Cafifornia

101 - Second Garnet Compendium

antSenecao

I I
#-z M~ : C EWI'E :RIW

Man rfIn= *IC 1

irz +OW... .-- -re -)__.
,, .,>W4Z* "Labelt ?

Figue 2: Gilt Propery Sheet Window . , , - A "- i
The PropeM Shen wmdow for a se of.check boxes. The . -'
designr can press with the cwusor over my of the texn fields.
and type a new value Pressng on the icon next to Fong or
Fore roand-Color will bring up a sub-dialog box. Figure 3: Style Editing Window and TabStop Window

Row-Tab A is selected in the work window (top), and is a

haoi7Aal tab that is 20 pixels fron the top of the window,
as shown by the TabStop Editing window at the bottom. The

existing label should have the same left. It pops up a window string "Font Selection:" is top-justified on Row-Tab A, and
so thdtki5D can conifrm the guess, and if the designer says centered horizontally on Col-Tab B, which is centered in the
yes, then Druid adjuts the objects automatically. However, will move if the window changes sie. The
Druid does nom infer other properties of the objects, and the S idw, s it Window so ithat sus
layo rules am hard-wired, rather than based on the user's Style Edirtng window (cener) shows that the RoTle is using
preference, as in GiltL the style Ma.Tide and Cot-Tab B and Row-Tab A.

Many interface builders have provided interesting mecha-
aning for specifying the positions of widgets. For example, desired way, selects it. and then defines a new named style
PormsVBT(21 and ibuild (131 use a "glue" model based on based on it. More general text styles are supported in (101.

TeX. Glue has a varying stretch, and using the right kinds
of glue between widgets causes the widgets to move ap-
propriately when windows change size. In Lapidary[61. the GRAPHICAL TABS
designer can select two objects, and define arbitrary layout An important graphic design principle is that widgets should
constraints between them. The most common constraint be aligned evenly. This means that the edges or centers of
can be applied by using iconic menus. OPUS[3] shows the widgets should be the same. and that they should be
the specified constraints as wins between the objects. We evenly spaced. Furthermore, different dialog boxes should
feel that the concept of tab stops will be more familiar to use the same alignments. For example, if in one dialog box
users and will be easier to use than these other approaches, a set of radio buttons is left justified under a tde, and offset
while still providing most of the needed functionality. Also, below it by 10 pixels, the same offset and alignment should
no previous interactive builder has incorporated a notion of generally be used in other dialog boxes.
Graphical Styles, as used in Gill

Graphical tabs allow these kinds oi relationships to be
The design for styles and tabs in Gilt is based on their use in defined. A "graphical tab" is a horizontal or vertical position
text ditors, in particular Microsoft Word for the Macintosh. in a window. A horizontal tab position is specified relative to
This text editor allows the users to move a marker in a the top, bottom or center of a window. Similarly, a vertical
graphical ruler to set a tab stop. and if the TAB key is typed, tab is specified relative to the left, right or center. This allows
the text cursor will move to the designated place. To define the tabs to move appropriately if the window is resized. Just
a style in Microsoft Word, the user formats some text in the as with text editor tabs, the designer can specify whether the

November 15-18, 1992 UIST'92 119

Graphical Styles For Building Vls by Demonstrzition -102

mainv-Title OK cancel
FotS c~ :Sub-Title* Chnge Rfvjren

0446 Props 4 1IU

se Pon, ONLY

FigureS5: Set Style Window
Thiis window allows designers to explicitly set a style. All th
currenu defined styles are listed on the left, and the designer
can choose one, and then specify whether the associated
properties, position or both should be applied to the selected

l~OiSI*'*~h* *CK CMWUlwde. fteslctdsyeue arltv osto Fgr
wigt U~gg te seece stl ss eaiv oiio Fgr

________________________ 4), then the Change Referent button is rnot grayed-out, and
can be used to select the widget that the widget should be
relative to.

Figure 4: Style Editing Wlindow for Relative Position
The position for the radio buttons is defined relative to the
string --Size-. Since all the widgets in the Garne toolkit use the same names

__________________________________ and values for-similar properties, a style defined on one type
of widget will often work on other types. For examiple. radio
buttons, check boxes, and button sets all allow the designer

widg~ets will be left-justified. centered, or right-justified on to specify the orientation (horizontal or vertical) and foams.
the tab (or top-, centered, or bottotn-justihied for horizontal in the top window of Figure 1. all the buttons have the same
tabs). Since Guuet is implemented an X11l1 which uses a style properties. Mks types that styles are associated with
pixel coordinate system, the offsets are specified in pixels, include strings, buttons (which include radio buttons. check
Gilt names the tabs with letters (although user-named tabs boxes and butto sets), numeric sliders (which include both
might be added in the futur). Figure 3 shows a Gilt work sliders and scroll bars), text input fields, etc.
window with a set of tabs visible. Whether the tabs are
visible or not is controlled by a command. Styles can also include position information. For example.

a designer might specify that widgets with the Main -Title
New tab stops can be explicitly added by clicking on the style should use a very large bold and italic foot, and be
"add tab" buttons in the TabStop Editing window shown at centered at the top of the window. The position information
the bottom of Figure 3. Tabs can be selected by pointing on for styles can either be with respect tu a graphical tab stop,
the label next to the line in the work window. The selected or relative to a previously created widgetL For the first type,
tab can then be deleted if no styles or widgets are using it. the appropriate tab namne can be entered into the style editing
Tabs can be edited by entering new values into the tabstop window (see the center window of Figure 3). Either or both
editing window, or the tab stop labels in the work window of the horizontal and vertical tab name fields can be blank,
act as handles and can be directly dragged with the mouse. in which case no position information is recorded in that
When a tab is moved, all of the widgets defined using that direction.
tabs ame also moved.

To specify that a style's position should be relative to another
widget, the designer selects the referent widget after the style

GRAPHICAL STYLES editing window is displayed. The style window will then
A graphical style includes a set of widget properties, and change, as shown in Figure 4. Whcn a stylc is relative,
optionally some position information as well. To create only the type of Ote referent widget is renicibered. I-or
a new style, the designer modifies a widget to the desired example, in Figure 4, the style is defined as offset from any
appearance using the conventional property sheets, selects string. This will allow the Button-Below-Label style to be
that, widget, and then issuies the Define Style command. The used relative to other strings, which can be in other parts of
designer must then type a style name into the Style Editing the window.
window that will appear. Gilt compares the widget's current
properie with the default values for that widget and copies The Set Style window (see Figure 5) allows the designer to
all that ame different. The widgets used to define the style are choose any of the defined styles, and also whether the position
surrounded with a dark outline rectangle in the work window and properties aspects of the style should be applied. When
while the style is being defined or edited C*Foat Selection:" setting the properties, Gilt checks each property associated
in fth top window of Figure 3). with the style to see whether the widget accepts tha property.

120 UIST'92 Monterey, California

103 - Second Garnet Compn rrdium

n1wi i Jg-arni~tiqiltigilt-styles "- I $A-- I Cl4ARI MU : EdL~ag that objoct wiLll r~mllt OKI_width it~s style: "Sub-TU*..

* ~ 'iinid1AC ~tmt ~cancel change
&~ Ake itL NOT be *uTizl*

sec style 06i stl Fd5 cat ta Wca abstap i %0 zt 'It b~e *uZ~b-T Itlt. but wi rez*ta

~ ~edit the Style: 15Ub-Ttltle for all obl.ctBa

* Fiure Stle Cntrl WidowFigure 8: Warning Window
Thisur 6:dO alO S tyleg Cotro Window a This wido pops up when the desipier edits a widget that

and style guessing to be turndfl on and off. Also. th stylsyeetace t i
of the selected widget is alwatys echoed at che bottom of the
window.

whenever a widget is created or moved. The algorithm looks
for styles that affect the same type as Elhe widget, and checks
how close the widgetmatches the style's position. For a style

3.1 on~with a relative position, in order to find its possible referent
Co~loz'widgets Gilt checks all the widgets of the appropriate type

coo Palette. oJ i near fth new widget. A list is created of all the styles that
match, sorted according to the distanc to the tab stops or

3 ~the referent widgets. For example, it. Figure I the main-tide
U and the sub-titles use different styles with different fonts and

positions, and Gilt can infer the appropriate style from ther r ~ position when the designer places the new string.

Po__ ~ e Any inferencing system will sometimes guess wrong. Thus,
dL'Lgit is important to provide appropriate feedback so the users

are confident that they are in control and know what Gilt is
doing. In immediate mode, the first style on the style list is
immediately apliedto the widget. and the name of the style

Figure 7: Inferring Styles is showni at the bottom of the stle control window (Figure
__________________________________ 6). The widget will also jumrp to the infcrred position and

change. appearance. If the inferred style is not correct, the
designer can hit the Try Again button (Figure 6), which will

If not, then that property is ignored. For example, a style remove the guessed style and instead apply the next style in
defined using radio buttons might have a value for the Tez- the sorted list. The Undo button can also be hit to remove the
on-Left-p property, which determines which side the diamond guessed style, and return the widget to its original position
is on. However, this is not relevant for push buttons (since an properties In prompt-first mode, the sorted list of all
their text is inside the button), so it would then be ignored the inferred styles is presented in a window, with the mast
For styles with absolute positions, the widget simply moves likely selected. The designer can select a different style, if
to the correct tab stop. For relative positions, the user can necessary, and then hit OK or Cancel.
specify the referent widget.

When a style is defined, it immediately becomes a candidate
INFERRING STYLES for inferencing. Thtis is very useful when a number of
Although the styles mechanism as described above is already widgets will all be created using the same style. In Figure?7,
quite useful, Gilt goes further and tries to automatically after the designer defines a style which centers the text label
determine when a particular style is appropriate. The Style below the first scroll bar, when the second scroll bar and label
Control window (Figure 6) provides three options: no are created, the label will automatically be centered. This
inferencing of styles, styles applied immediately when they highlights an advantage of the style approach over a rule-
are inferred, or a prompt-first mode where the designer based approach as used in Druid and Peridot. Those systems
is asked if the style should be applied, as in Peridot and might have put the label left-justified under the second scroll
Druid. If the system usually infers the correct style. then the bar if it was placed closer to that alignment, but Gilt only
immediate mode will be the most efficient. matches against previously demonstrated styles, so it is more

likely to guess the designer's intentions. This will also help
When inferencing is on. Gilt cries to infer a new style achieve a consistent design.

November 15-18, 1992 UIST'92 121

Gravhical Styles For Building Uls by Demonstration -104

-ITING STYLES
When a style is applied to a widget, either explicitly or
infefd. Gilt sots up appropriat Pointers and back pointers Dialog Boxes for Taskl:

$0 that if the style is ever edited. all widgets using that style DBox I
we imraiady updated. n a tactioz" :PFont sel.Itliot:

Styles=an be edited in two ways. A property sheet can be st . '
displayed which shows the current values of the properties
for the style, and this can be edited directly. This property ,. v - ,
sheethas the same format as the ones for the standard widgets
(Figure 2). The position associated with the style can be 6" "', -,'""

'edited using the appropim dialog boxes (Figure 3 and 4). root few Ls-. j,,.=

Alternatvely, the designer can edit the styles in the same
way u they were created: by working oan example widgets.
W•enever a widget is edited that has already been defined to DBox2
be of a particular style. Gilt pops up a dialog box asking if
the edit should change the style itself (Figure 8). The other Sutoto XACeractoZ:
altenatives are to make the widget no longer belong to the stm•-11,•,t

style, or to cancel the change and return the widget to its =,,.
appearance before the edit was altempted. ju,: .. AS*. j"

In the funuu, we plan to add the ability to have widgets .W.ft," %,- W & --
use a psficuIlar style with exception, but this is a complex
problem[4J. Some of the issues are whether to copy the .
attributes or retain the link to the original style, what to do Iwak iw-a-.- :nb •
to a style when the style it inherits from is changed. and ______________, ______

whether to ae the inheritane links in the style files, or
write out all the style information to each file.

Dialog Boxes for Task2:
wR G AI• READING STLES DBox3
A set of styles can be writen to a file using the buttons in
the style control window (Figure 6). This file can then act .- l- Style:
as a "Style SLeet." Whenever a new dialog box is being r.z", __tta_

created, the style sheet file can first be read. Then. the
appropriate styles can be inferred or explicitly applied to ,,
the widgets. This will help insure that the new dialog box
is consistent with previous dialog boxes created for this or
other applications.

When the work window is saved to a file, Gilt will optionally fl.ik.u
include the style information in that file. In this case, the file
is self-contai• d Alternatively, the file can simply contain DBox4
a pointer to the appropriate style file. Then, whenever the
window is used by applications or read back into Gilt. the Color Selection:
style file will be re-read, so any subsequent edits to the styles color Pafto -
will be reflected. However, this can cause the window to
look ugly (for example, if the style for a set of radio buttons
changes from horizontal to vertical, the buttons are likely to Ti
overlap other widgets). Therefore, a version number is kept
in the style file. so at least a warning can be issued when an
old window is opened with an edited style file.

EVALUATION
As a small, informal experiment to see how quickly users
could create interfaces, using grapical styles and tabs. four
subjects were given two tasks. Each task has two similar Figure 9: Dialog Boxes for Task I and Task2
dialog boxes. For the first box in each task (i.e.DBoxl and
DBox3), the properties for all widgets were set using the

1 22 UIST'92 Monterey, California

105- Second Garnet Compendium

propet sheet. Their positions were determined using tabs.
The several styles were defined using these properties and Table 2. Taskl Result
*Xpou•widi For the second box in each task (Le.DBox2 and [sWe DBoxl DBox2 DBoxl+2
DBoX4). the properties and positions for all widgets can be
infeired automatically, using the styles defined in Style: Subject A fir420 160 580
box (Table 1, Figure 9). The sane four dialog boxe ar Style: SubjectB 0I(0 200 1200
creased without any styles by a Gilt experL Tbe results were Style: Subjct C 910 300 1210
used to compare with above results (Table 2 and 3). Style: Subject D 1060 270 1330

Tstyle: Average 847 233 1080

Table 1: Task Description I No Style: Subject A 490 510 1000
I Ratio 1.73 0.45 1.08

Taskl Task2
_ DBoxl DBox2 DBox3 DBox4

Widgets 8 9 7 Table 3: Task2 Results
"'DefivahlabStops 3 . 0 1 0 [sac] DBox3 DBox4 DBox3-4
...Defied Styles 6 0 4 0 Style: Subject A 250 110 360
Guessed Wrigets 2 9 3 11 Style: Subject B 400 300 700

Style. Subject C 380 180 560
Style: Subject D 500 ISO 680

Fron Table 2 and 3, it is clear that the dialog box, where Style: A'erage 383 193 575
all widgetr am inferred. is created in less than half the time
for diakl4 boxes without styles: a 0.45 ratio for DBox2 and No Style: Subject A 300 460 760
a 0.42 atio for DBox4. In gusing the styles for users Ratio J 1.28 0.42 0.76
w DBox2 and DBox4, Gilt guessed correctly almost all the
time. The over-heads for defining styles and tabs am small:
a 1.73 ratio for DBoxl and a 1.28 ratio for DBox3. Note.
however, dtat the loge time for DBoxI is mostly due to relative styles. It seems like there should be a convenient
the learning time since this was the first time using Gilt and way to define "relative tabs" that will achieve the desired
styles for almost all subjects. In addition, novices can learn results. As discussed above, we would also like to investigate
Gilt styles and tabs quickly, because, in DBox 1, they needed exceptions to the styles. There might be a way to copy just
a 1.73 ratio, bit, in DBox3, they needed only a 1.28 ratio. some values from one style into another, and ways to mad

just a few styles from a file. Further work is needed on ways
The verbal protocols for these subjects indicated that they for the system to automatically generalize styles, so that, for
felt that Gik style guessing was useful and comfortable, example, the font property or color defined on a radio button
Two subjects said that the "Try Again" button is very good. will be applied to a circular gauge, even though they have
Subject A, who took this test twice, using styles and without different types.
any styles, felt that defining relative styles was very useful,
because the conventional layout mechanism did not support
"offset" among widgets, so he often had to calculate 'left CONCLUSIONS
+ width + offset" values for the referent widget. in order The Graphical Styles mechanism described in this paper
to determine the left hand position for the new widget. He can help designers more quickly create user interfaces, be-
indicated that graphical tabs were good for aligning some cause many of the propertes and alignments can be applied
widgets at particular fixed lines. However, all subjects with a single specification, or even inferred automatically.
claimed that they had to think about style names, whenever In addition, the styles can help insure consistency across
defining any styles. They indicated that it was difficult multiple dialog boxes in an application, and even across
to give good names for all styles. Also, they said that multiple applications, since Style Sheets can be developed
sometimes they couldn't remember whether this name had and re-used. The Graphical Tab mechanism seems to be
already been used or not. Thus, we plan to prepare a default an easier-to-understand and easier-lo-edit mechanism than
style name in the style editing window, other layout approaches. Finally, in addition to being useful

for user interface builders, such as Gilt and YUZU, we feel

STATUS AND FUTURE WORK that the graphical styles and graphical tab mechanisms would
be useful for a wide range of graphical editors, including

An earlier version of Gilt has been released to all Garnet drawing programs and CAD/CAM.
users. The version described here has been mostly imple-
mented, and is expected to be debugged and released in the
next few months. ACKNOWLEDGEMENTS

Andrew Mickish helped to implement the features described
In the future, we plan to investigate unifying tabs with the in this article. Brad Vander Zanden and other members of

November 15-18, 1992 UIST'92 123

GCraphcal Styles For Building Uls by Demonstration -106

Garn project provided useful advice and help with the de- [12] Takahiro Sugiyama et at.. CANAE User Interface
sin and implementatioa. For help with this paper, we want Buldder YUZU (In Japanese), In Proceedings of the
to dunk Dave Kosbie. Richard McDaniel, Andy Mickish, 45th National Convention of Information Processing
Francemary Modugno, Bernita Myers. Brad Vander Zan- Society of Japan, Tokushima, 1992, 5Q-3.
dm, T1axnti Kanba. Hirohi Yamada, Kin-ichi Hisamh nu, [131 Jobn M.Vlissides and Steven Tang. A Unidraw-Based
Kyoji Kawagoe, te YUZU development members and the User Interface Bulder. In Proceedings of UJST 91,
reviewers. Hilton Head, 1991, ,n.201-210.

This research was paially sponsored by NEC Corporation. (141 Bruce F.Webser. The NeXT Book. Addison-WesleySresarc wupariall spmon byI•C orpraton, Pub~lshig, 1989.
and partially by the Avionics Lab. Wright Research Pnd De1
velopmam Cenmer, Aeronautical Systems Division(AFSC),
U.S. Air Force, Wnght-Pateraso AFB. OH 45433-6543 un-
der Contract F33615-90-C-1465, Arpa Order No.7597. The
views and conclusions contained in this document are those
of dte authors and should not be interpreted as representing
the oficial polici. either expressed at implied, of the U.S.
Government

REFERENCES

[1] Lua CardehiL Building User Interfaces by Direct ma-
nipulation, In Proceedings of UI=P 88. Alberta. Canada,
1988, pp.152-166.

[2] Gideon Avrahati, Kenneth P.Broos, and Marc
ILBrown. A Two-View Approach To Constructing User
Interfaces, In Proceedings of SGGRAPHI89, Boston,
1989, pp.137-146.

[3] Scott E.Hudson and Shamim P.Mobamed. Interactive
SpecifcationofFlexible Interface Displays, ACMTrans-
acions on Inormadion Systems 8.3, 1990, pp.269-188.

[4] Jeff Johnson and Richard J.Beach. Styles in Document
Editing Systemws IEEE Computer 21,1.1 988, pp.32-43.

(5] Brad A.Myers. Creating User Interfaces by Demonstra-
tin. Academ* Press, 1988.

(61 Brad A.Myers, Brad Vander Zanden. and Roger
BJ)anenberg. Creating Graphical Interactive Appli-
cation Objects by Demonstration, In Proceedings of
UIS7=89, Williamsburgh, 1989, pp.95.104.

[7] Brad A.Myers, Dario A.Giuse, Roger B.Dannenberg,
Brad Vander Zanden, David S.Kosbia. Edward Pervin,
Andrew Mickish, and Philippe Marchal. Garw: Com-
prehensive Support for Graphical Highly-Interactive
User Interfaces, IEEE Computer 23,11. 1990, pp.71-
85.

(81 BradA.Myers. Separating Application Code fromToolk-
its: Eliminuting the Spaghetti of Call-Backs, In Proceed.
ings of UiS7'91, Hilton Head, 1991, pp.211-220.

(9] Brad A.Myers and Mary Beth Roson. Survey on User
Interface Programming, In Proceedings of CHr'92,
Monterey, 1992, pp.195-202.

[10] Brad A.Myers. Text Formatting by Demonstration, In
Proceedings of CHrI90, New Orleans. 1991. pp.251-
256.

(111 Gurninder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A System, for Demonstrational Rapid
User [rAerface Development, In Proceedings of UIST 90,
Snowbird, 1990, pp.167-177.

124 UIST'92 Monterey, California

107- Second Garnet Compendium

Reprinted from Proceedings S1GCHI'91 .- Human Factors in Computing Systems. i

New Orleans. LA. April 28-May 2. 1991, pp. 243-249_

GRAPHICAL TECHNIQUES IN A SPREADSHEET FOR
SPECIFYING USER INTERFACES

Brad A. Myers

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT underlying prograjining Lingtuge. llowcver. it i, ig
Many modem user interface development environments nificantly easier to use, and provides many of the ad-
use coMstraints to connect gralical objects. Constraints vantages for graphics programming that financial spread-
ame relatioships that are declard once and then maintained sheets provide for business.
by the system. Often. sysMIms provide graphical, iconic. Of
demonstratial techniques for specifying some con- C32 is different from previous spreadsheet systems for user
smaints but these ae incapable of expressing all desired interface construction because 4 uses a wide array of visual
rebaoi-31ups, and a is always necessary to allow the user and inferencing techniques so the user does not have to
imaerface designer to write code to specify cinplex con write the entire constraint by hand. In particular
strainis. The spreadsheet interface described here. called e C32 automatically generates appropriate references to
C32, p•0vidcs the programner with the full power of writ- grahical objects when the user clicks on the object in a
ing constraint code in the underlying programming lan- user interface window.
guage, but i4 is significantly easier to use. Unlike odier a It uses demonstrational techniques to guess which
spIeadsheets iools for graphics. C32 automatically properties of objects should b. used.
generaws appropriate object references from mouse clicks * It guesses how to parameterize constraints when they ame
in graphics windows and uses inferencing and demonsira- copied from one place to another or generalized into
tional techniques to make consaucung and copying con- procedures, so abstract and reusable constraunts can be
st.ain e In addition, C32 also supports monitoring constructed by example.
and debuging interfaces by watching values in the spread- e It incorporates graphical techniques to help u-cse and
sheet while the user interface is running. debug constraints.

* It is integrated with an existing prototype-instance sys-
KEYWORDS: Constaints, Spreadsheets, User Interface tem ut which constraints can be inherited.
Development Tools. * It is one of a suite of tools built on top of an exisung,

successful constraint system. rather than providing the
INTRODUCTION only interface to the constraints, so users can choose
C32 is a tool that helps users construct constrains. A other tools when they are more apr ")pnate."1constraint" is a relationship among objects that is
declared once and maintained automatically by the system. Many systems provide a graphical, direct manipulation
Typically, a constraint is expressed as an expression (or technique for specifying some constraints. Unfortunately,
"formula") that is stored in a slot of an objectL The ex- such techniques are incapable of expressing every con-
pression is re-evaluated whenever any other values change straint the user may want. C32 provides a convenient and
that are referenced in the formula. Constraints are used to easy-to-use technique for constructing constraints when the
control the graphical objects in many modem user interface graphical techniques are inappropriate. For example, C32
toolkits, pops up when the user asks for a custom constraint :n the

Lapidary interactive design tool [81. C32 can also be used
C32 uses a spreadsheet model and provides the program- stand-alone when a graphical front end is not available.
mer with the full power of writing constraint code in the We have found C32 to be significantly easier to use than

construcung the constraints by typing in code.

Permission to copy without fee all or part of this metenal is C32 has been implemented as part of the Garnet system
Wranted provided that the copies wle not tade or distibuted too [10). It is an acronym, and stands (or CMU's Clever and
direct ¢t erahi advaltge•, the ACM CoP~fyht notice td the Compelling Contribution to Computer Science in
utle of the publkoamion end its date appea,. and notice to given --

that copying is It pemiishon of the Asso~iation for Conlurn CommonLisp which is Customizable and Charactenrzed by
Machine•y. To copy otherwtve, or to republish, tequ.res a fte a Complete Coverage of Code and-Contains a Cornucopia
and/or specific muon, of Creative Constructs. because it Can Create Complex.
• 1991 ACM O-.9791-383-3/91/000410243...S1.50 Correct Constraints that are Constructed Clearly and

243

GrayhicalTechniques in a Spreadsheet for Specifying User Interfaces - 108

_Concrely, and ame Communicated using Columns of Cells Through extensive experience with the many projects that

thtM am Constandy Calcuilaed so they Change have hand-coded Garnet consultints, we have discovered

_.WaousIyIod Cancel _nfusion. that people have trouble generating correct contraints. Al-

though most constraints in interfaces am very simple, there
•ELATEa WORK re a reasonable number of five to ten line code fragments

SPreadshes have beea used for fiacia caculations for a used as constraints. Even the simple constraints can be

long tine, swdng with VisiCa in about 1984, and most tricky to enter, since the User must reference the ap-

sysems have dte sae fam: a army of cells, with each propria objects and slots. Also, given a set of constrainLs

co1m=a labeled with a letter mad each row with a number. that are not working correctly. users have difficulty finding

Some ealensions to the spreadsheet idea include using it for the bugs. C32 was designed to address these problems.

logic propannaing [121 and a technique for adding
pocedual absraction[(I.view

C32 can display and allow the user to edit any kind of
"Th lNOPUlpG and NoPumpil Msyts [151 use spread- object and constraint, no matter how they were createwd by
sheets to define graphical uet interfaces, but they have a hand-coding, by using Lapidary (a Garnet interactive
number of imponaM diffeences from C32. The most im- design tool), or by using C32.
porta is that the NoPump systems provide many different
types of cells. In C32, all the cells are die same type: slots Figure 1 shows a typical instance of C32. Each column
of objects. To program dhe user interface. NoPump contains a separate object. Rows am labeled with the
provided special cell types tha reported low-level mouse names of the slots, such as :left, :top, :widt h,
postioM and clock tickks whereas C32 uses Garnet's high- :height, :visible, cic. Since different objects can
level Interaclar objects [91 to handle behaviors, and slots of have different slots, the slot names are repealed in each
11t1aor c=a be specified and viewed in C32 cells, just column. For example, lines have slots for the endpoints
like any oer objecr. In NoPump, the cells am free float- (:xl, :yl, :x2, :y2) but rectangles do noL Also,
ing whereas C32 uses a tabular orpnizatn, like a conven- each object's display can be scrolled separately, so each
tona s madsbee. Thus, all the cells about a paiular has its own scroll bar. This makes the spreadsheet look

object an always in one place in C32. Ther am additionl somewhat like a multi-pane browser as in SmalltalkL
small differences. The cells in NoPump ate typed and the
fomulas use a speial language. In C32 the cells can bold The spreadsheet cells show the current values of the slots.
any kind of value, and formulas ae expressed in a standard If a value changes, then the display will be immediately
language (ComMn Lisp). Also, NoPump provides few updaled. It is important to emphasize that the user interface
facilities for object referencing, and none for formula being constructed will operate normally (albeit a little
generalization, slower) even while the spreadsheet is displaying objects in

that user interface. The underlying constraint mechanism is
Constraints have been used by many systems, starring with used internally by the spreadsheet to maintain this connec-
Sketchpad [13] and Thinglab [31. Uses of constraints lion. Monitoring the values as they change can help the
within user interface toolkits include GROW [2], Pedidot programmer debug objects, and makes the consamnts
[7], Apogee [5), and CONSTRAINT [14]. much more "visible" and understandable. If the user edits

the value in the spreadsheet cell, the object's slot will be
Graphical interfaces to consratints include the "wiring updated.
diagrams" in Thinglab [41, the iconic interfaces in Juno
and Lapidary (81, and the reference lines in Apogee (6]. The @ icon by some slots in Figure I means that the slot
The Peridot system automatically infers constraints from value is computed from a formula. Pressing the mouse on
example drawings [71. The wiring diagrams are hard to use the icon causes the constraint expression to appear in a
for complicated consiraints, and the other techniques can- different window (see Figure 2). The expression itself can
not even handle complex constraints. The spreadsheet in- be edited by typing or other techniques (discussed later).
terface described hem could be used as a supplement to Note that unlike cells in conventional financial spread-
these other techniques when they cannot generat the sheets, C32 allows a slot to have a value different from
desired relationship. what the formula would calculate. Therefore, the user can

edit the value of slots with formulas without affecting
CONSTRAINT EXPRESSIONS whether there is a formula there or noL This can be useful

Objects in Garnet have instance variables or fields, called when trying to rind the correct value for a slot while debug-
slots. The content of each slot is either a normal value, ging. To remove a formula, the user simply deletes the

such as a number or string, or a formuia that computes the entire string in the formula display window.
value. References to other objects in formulas use a special
form: (gv other-object slot-name), where -v One novel feature of the underlying object system is that

stands for "get value." new slots can be added to objects at any time. Using C32.
the ,ser can create a new slot by simply typing a slot name

Because each slo" can contain at most one formula, only and value into a blank row.
one-directioral constraints are supported. We are explor-
ing multi-way constraints for the future, in which case C32
will be changed appropriately. 'All slot mne sutan with a =&m.

244

109- Second Garnet Compendium

_________ srr i _______, _____

• :Left I0:Stringa * "2

(a) ZA RAM=-

• ;,-tir &mA~a-Reoz e OPAL .E7Z-

•D"fitc . .Cc"

(b)
Figure 1: (a) C32 viewing three objects (b). The scroll bars can be used to see more slots or columns. Changing the

window's size will change the nwnber of slots and objects displayed (the number of rows and columns). Field
values as clipped if they am too long, but can be scrolled using editing commands. The 0 icon means that the
"slot value is computed with a formula. All inherited slots are shown in italics and marked with the 0 icon.
(Inheritance is discussed in a later section.) When aformuda is inherited the value is shown in a regular font since
it is usually different from the pOtype's. The inherited icon is also shown next to the formula icon rather than
next to the value.

ro a to: s- z ,be proportional. The user can easily add commands to this
menu, either written in a conventional way or created from

!(OT (rA = :t• formulas. When functions are inserted from the menus,
(IFLOi (-- (V KY-P.•Ke=hMG :ViWM) C32 puts the parentheses in the correct places and leaves

1(2)) O U1Dm)) the cursor where the arguments to the function go. In this
I 2)) 4 way. C32 can be used like a syntax-directed editor, which

__ _ _1_ _ _!_ _ has the following advantages:

* the user does not have to deal with the syntax of the
Figure 2. A formula window showing the constraint in th language so there will be fewer syntax errors,

: left slot of the STRING1 object of Figure 1, * the system will handle the parenthesis matching, which
which centers the string in the rectangle. otherwise can be annoying in Lisp, and

e this makes the system accessible for people who do not
know Lisp.

To view an object in the spreadsheet, the user can simply

type the object's name into the title of a column. Alter- GENERATING OBJECT REFERENCES
natively, the user can select a column, and then point to an One of the most interesting aspects of C'32 is the way that
object in a graphics window, object references can be specified. As in a financial

As with financial spreadsheets such as Microsoft Excel, we spreadsheet, the user on point to a slot and have a refer-
ence to that slot inserted into the formula at the currentprovide a menu of the common functions used in piLFgr hw o hscnb sd

formulas. Another menu contains the graphical com- pot. Figure 3 shows how this can be used.

mands provided by Garnet, including functions to center In Garnet, there are different ways to reference an object in
objects with respect to other objects and to make their size a formula. Unlike other systems such as Peridot and con-

ventional spreadsheets, Garnet allows indirect references to
objects, where the object to be referenced is stored in a slot

w T m s my vateuaim no CQ asw tm ' only u am of the object that contains the formula. One place this is
oawmanly use an pmvidm t w mnu.

245

Graphical TechniQues in a Spreadsheet for Specifying User interfaces 110

used is in composim objects. For example., if a graphical
aggregm is comipoed of a shadow, an outline rectangle,
and a labelr as shown in Figure 4. then a reference to the
left of the shadow from the labe would not name the
shadow drectly. Instead tde reference would be:

(qv-indirect :parent ahadow :left)

These indirect refeences make it much nome efficient to
create copies and unsances of aggregates, since as is not
necesmsar to s=ech dfrogb all the formulas and change the
references to refer to the new object& Whe die formula
and the slot being referenced m pan of te sautme aggregate
sruce, dune an indirect reference like the one described
above must be generaled. If tde objects are totally distinct.
then a direct reference can be used. C32 searches the ob- ,,,I,,, SuA

ject hierarchy to decide which is appropriate.

USE OF INFERENCING
Is is somenimes not convenient to mad an object into a
spreadsheet column just to generate a reference 10 it.
Therefore, a command will cause the system to go into a
mode where a graphical object W any Gaume window can
be selected and a reference to it placed into the current
foraula. However, selecting a graphical object does not frm&aUZI. 1..

specify which slot of the object should be referenced. In WNUV P

one mode, the use must type this directly or seect a slot -1 - ("p9 ,VC-T, U ,op#

from a menu. However, there ae two inferencing modes
Sthar y to gue slotfrm the user'$ actionsj One uses Figure 3: The spreadsheet before and after the user has
the curent rlmionship of the two graphical objects to selected the :top cell of KY-RECTANGLE to
gue the desired constraint, much like Peridot (71. For be inserted into die formula.
example, if the ski being edited is : .eft and the object
seems to be centered horizoutally with respect to the
selected objreit then C32 generates a centering constraint.

The other mode ignores the currena positions of the objects,

pressed in the selected object. For example, if the slot isbuteoose at the selotd objeingt.e and werape.,i the mouse is
: left, and the mouse is pressed at the right of an object.
then the reference will be to the right of the objecL For dth -*Button (aggregate)4-*.
:width slot, however, the same press would generate a :paren
reference to the width of the object. Unlike Peridot, C32
does not try to confirm any of the inferences, but rather /shado abet
simply inserts the text into the formula. If die guess is /cparent
incormct, it is easy for the user to delete the text and type .outlin
the correction. 1pr

Once a complex formula is created, it will often be needed Push Me
in a slightly different form for a different slot or a different
object. As an example, suppose the user has constructed a
constraint that centers an object horizontally with respect to
two other objects (see Figure 5). Now, suppose the Figure 4: A graphical button and its aggregate hierarchy.
programmer wants to center the object vertically also. The References from one object to another use paths
formula could be copied to the : top slot, but all the slots through the hierarchy. Objects that are part of
references need to be changed (:left to :top and the button have programmer-assigned names.
:width to :height). Therefore, when a formula is like :shadow and :outline, and references
copied, C32 Mries to guess whether some slot names should to th buton from its pans uses the standard
be changed. This uses a few straightforward rules based on : pa rent slot. In a slot of the shadow, a refer-
the slot names of the source and destination slots. If it ence to the :width of the text label would be

(qv-indirect :parent :-label
:width).

246

11l - Second Garnet Compendium

(a)
(facmula ' floor (+ qv rl1:loft) ;Jlordw ine divide

(qv ri :width)
(gv t2 :loft)

; to Ais~ 06jeas W~dA.
(- (qv-indirect :width)))

2))

(b)
Figure 5: (a) Rectangle R3 is centered horizontally between R1 and R2 using the formula shown in (b) so R3 moves

automatically when Ri and/or R2 moves.

a tiat slot names should be changed, the user is
queried with a dialog box., and if the answer is OK. then dhe Geneaaiz~ing R3s Jedft jbrmuad
formula is modified automaticaily,3 _ __ __ _-

Now Ferdim Na: [eater- seweea-.X
AUTOMATIC GENERALZATION
Another possibility is that the references in the formula GAWI o 2Oi~
should be geweraLized into variables. C32 thertform
provides a command shat will change the entire formula Il' E.,urc %S E. .1(it relacmd to as:b

into a function that takes the objects and/or slots as L Jri" o"P812e 1ers.This process is controlled by a dialog box. As
an example, generalizing the formula of Figure 5 creates
the dialog box of Figure 6a, and the code would be (a)
changed as shown in Figure 6-b. The new
Centesr-etween-X function can now be used in other (defun Center-B.twoen-X (ab~l ob)2)
formulas. It will also be added to the C32 graphics func- v(9 ob)l :videl)
tions menu, so it can be easily retrieved later. (qv ob 2 :left)

I- (qv-indirect :widtn)M)
The intelligent copying and generalizing discussd here 2))
helps the user genet correct constraints by exaIple, (formula ' (Center-Bet ween-X rl r2()
Without these aids, it is quite common to forget to change
one or more of the references when formulas are copied. (b)
Generalizing also helps the piogrammer decrease the size Figure 6: (a) The dialog box for generalizing from a for-
of the code by promoting the reust of existing formulas. mula. All the values shown are the defaults
Future research will investigate further ways to use provided by C32. After the user hits OK. the
generalization, formula of Figure 5-b is converted automaucally

into the function shown here in (b).TRACING AND DEBUGGING

Experience with Garnet and all other constraint-based sys-
tanns shows that people have a difficult time debugging spreadsheet to exercise and moritor the user interface in
their formulas. The primary problem is that constraints am action. Often, seeing the current values of all the slots is
not local because values in one object can affect values in sufficient to determine the problem. To help relate the cells
many different objects. Therefore, C32 provides a set of and objects, commands arc provided to blink the object
tracing and debugging tools, associated with a cell, or the cells for an object.

The most straightforward method is to simply use the Other commands display arrows in the spreadsheet to show
wtich cells are used in the computation of the current cell
(see Figure 7-a) or the cells that use the value of this cell
(Figure 7-b). We are exploring additional graphical con-

3Sscm o "a a m =dtcal • dnge d6m e i en• si discussd a straint debugging tools.

dib pre~iws section. it umns padew to nwmqu cizmf

247

Graphical Techniques in a Spreadsheet for Specifying User Interfaces .112

I(a)
W-i kfUt

(b)2Nfr
Figre7: 32wil dspay rrws o ho whchslos he uren on dpens n r wic sltsdepndonthecuren cll

(a sow dm ie:ifeofSTZ1G dpedsonab :of o de etngeand th 9Mdhso h

retage n islf(ine£3 eneed.(b hosthtth oUo th reMage i sdb h eta
string ~ ~ ~ ~ ~ ~ V an11o9h ie nbohves h ospit odeso en sd

RIHENTANCE frent currentvaPebeas hirowng n otvle r

which to ov2 willde.b oreample, mao grap hica l obets doe Theroe arpend many difren michanisms depnd tooln the Gar-n cll
no (ave a w flgstye slot, but STRUMe inerptnths oneft syste of Therefretungle, paniou spedhee:ithO sythe
vau.Ihried slot are shwnf (inc italics winterd.()sosta the le ico suha ofup C32 detnl s notd hav to addes t ftevr
netsotheirg value (se Figurde 1)e. anbt iwsiros pecnt tofte usloerintueraedesg.

InheriTAne inGmfieetrieryaicly hs Wente purorenammer weantse gtheicstring Garnet foto valespond
tmeanthausesa ixtyeingthealue;odaslointwachufethbe n iofetnemuhereorkeyb oarmulai inheritorbedthell i Isne
inherited changens the sodlot tobe localnis thet anew value.t marked tssow thexgaptc to thefruanl then input spevens.heret
02n showse ths by preovtogyte foianhewtedoionjct- ather alos astndar rtclta the valuepartossnuseshoonqueryalacd
no edistnted. beween alcalslos adelestaed fOmne abecit in mdfohfrpis.SneItrcosar bette a
Garnet, thateac systamnlookseindth prototypet tose ifnhart same alsoRAIO beT readR inoT2OOik rahcLSocshwvr
whlot eits therrie, and ifamso, they slot ica b becm s ihtd. ITheram are mnoifeet viibesoatheyscandntots bepinted Gat.
nt haeefri a slot igs delete ino02 but rthere inhri ahi valu Thserefre Therefare, comnlik prvou dsplayadsmenu ofylsthem
thalucne. Inherited. sl2t arhwni ihalige wthe pa the Mshow suthrasn Nofp all thoses notafet hav patcuadres grahicry
netthe inhrte value. Thse makues it. claatshpueta ect. or aluhser ithrate respond.oapiuaripteet

Inthoughthne locGarnslt is dtremoved froamteicsance, there tepormmrwns rpisinGre t epn
ieas stillat legaln valu vauefo of. a2 lot alc sd ob o hoseor beueybadwt thn Lapidary ibjctav u9 1se

inheite, chnge th slo tobe ocalwit th newvale inttrachedt diesignaphool to1 handletallowsuth dvens.ghermt
F32rshows caniso byeoigte inherited. ithscone atrca islotiis a standpacrds pofoo that the usI teirfaict use~tt x toqeyand
iedifferen curent a luforth slot, ideveendthoughathebformuin aodif then demonistratne hwintoshol areojcts. lthougha
isrthesame asytmlosi the prototype's For exmpei thet sidmh Laiaryo perovidesnt an2 Ucnlie grfaphcal obeto , mayhommonr
slot oxisa thexrobect usally fotheslo aeformula tnharted con cnsnts, C32 no vsble used whey ano moe omplex ort.s
pTstherfe wift baso sdeleedio C2nu the m obecsfn andsrn value, Theeorn , c tnsraet are ncesansatoyipa.amn f l h
Most, ten object ineithedC3rill thisfuag bth dsplhave ao shwdif-oo l hoeta fec atcla rpi b

th nhxte ale Ti mks tclwtote sr ht eto alths ta rson o ariulri4u8eet

113- Second Garnet Compendium

STATUS AND FUTURE WORK 2. Paul Barth. "An Object-Orienwtd Approach to Graphi-
The spreadsheet described here is mostly working, and we cl Interfaces*. ACM Transactions on Graphics 5. 2 (April
exect to release it to Gmaret users within the aext few 1986). 142-172.
months. Their feedbhck will be valuable in deciding what 3. Alan Boming. Thiglab-A Constraint-Oriented
features to add and modifyr. We C expect C~Lo I~ eSimulation Laboratory. Tech. Rept. SSL-79-3. Xerox Palo
* Other ways o use demonstation to creatM formulas. Alto Research Center. July, 1979.
* Morm clever generalizations from existing formulas.
0 Be coanection with Intzacm xs. There is a well- 4. Alan Boating. Defining Constraints Graphically.

defined protocol between Ineractors and graphic object Human Factors in Computing Systems, Proceedings
that serve as feedback objects. The spreadsheet could set SIGCHI'86, Boston, MA, April, 1986, pp. 137-143.
the appropriate fields of the graphic object a 7mnaticaly S. Tyson R. Henry and Scott E. Hudson. Using Active
if the object was placed in a slot of die Ineractor, as is Data in a UIMS. Proceedings of the ACM SIGGRAPH
done by Lapidary [8]. Symposium on User Inteface Software, Banff. Alberta,

e Ways to use C32 to create objects from scratch, so C32 Sympoiu OcU., 1988, pp. 167-178.
can be used as an inteface builder. Once objects have
been created in memor, Garnet already contains a built- 6. Scou E. Hudson. Graphical Specifwcation of Flexible
in meicanisn that will write them to a file so they can be User Interface Displays. Proceedings of the ACM SIG-
used by real applications. GRAPH Symposium on User Interface Software and Tech-

CONCLUSION nology, Williamsburg, VA. Nov., 1989, pp. 105-114.

The C32 spreadsheet contains a number of novel featutres 7. Brad A. Myers. Creating User Interfaces by

including the we ofdeimnsturtional techniques to genene Demonstration. Academic Press, Boston. 1988.
object references, autonmaic generalization of formulas, 8. Brad A. Myers, Brad Vander Zanden. and Roger
and graphical tracing and debugging. Thes make it easier R. Dannenberg. Creating Graphical Interactive Applicaton
to use than previous s1readshee-based graphical tools. Objects by Demonstration. Proceedings of the ACM SIG-
C32 enhances ft Gi•mre user intueface deveiopment en- GRAPH Symposium on User Interface Software and Tech-
vironmeat by payding an appropraw mechasm for nology. Williamsburg. VA, Nov., 1989, pp. 95-104.
speifying complex. custam counstainus. which occur he-
quently in ae inerface softvwre. C32 has demonstrated 9. Brad A. Myers. Encapsulating Interactive Behaviors.
that a spreadsheet tool can be a valuable addition to an Human Factors in Computing Systems, Proceedings
existing comnsaint-based system, and that it is possible to SIGCHI'89, Austin, TX, April. 1989, pp. 319-324.
get totally carried away in acronym building. 10. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,

ACKNOWLEDGEMENTS Brad Vander Zanden. David S. Kosbie, Ed Pervin. Andrew

Brad Vander Zanden contributed to the design of C32. An Mickish. and Philippe Marchal. "Comprehensive Support

earlier version of C32 (then called C29) was implemented for Graphical. Highly-lntcracive User Interfaces The Gar-
by Andrew Mickish. The Garnet system as a whole has net User Interface Development Environment. IEEE

been developed by a large number of people. For help with Computer23. 11 (Nov. 1990),71-85.
this paper, I want to thank Brad Vandcr Zanden, Bernita 11. Brad A. Myers. 'A New Model for Handling Input'.
Myers and the referees. ACM Transactions on Information Systems 8 (1990), To

This research was sponsored by the Avionics Lab. Wright ppear

Research and Development Center, Aeronautical Systems 12. Michael Spenke and Christian Beilken. A Spreadsheet
Division (AFSC), U. S. Air Force, Wnght-Patterson AFB, Interface for Logic Programming. Human Factors in Com-
OH 45433-6543 under Contract F33615-90-C-1465. Aspa puting Systems. Proceedings SIGCHI'89. Ausun, TX.
Order No. 7597. The views and conclusions contained in April, 1989, pp. 75-80.
this document are those of the authors and should not be 13. Ivan E. Suthcrland. SketchPad: A Man-Machine
interpreted as representing the official policies, either ex- Graphical Communication System. AFIPS Spring Joint
pressed or implied, of the U.S. Government. Computer Conference, 1963, pp. 329-346.

Additional support for Garnet was supplied by Siemens. 14. Brad T. Vander Zandcn. Constraint Grammars--A
Apple Computer, Inc. and General Electric. New Model for Specifying Graphical Applications.

Human Factors in Computing Systems, Proceedings
REFERENCES SIGCHI'89. Austin, TX, April, 1989, pp. 325-330.

1. Allen L Ambler. Forms: Expanding the Visualnes of 15. Nicholas Wilde and Clayton Lewis. Spreadsheet-
Sheet Languages. 1987 Workshop on Visual Languages, based Interactive Graphics: from Prototype to Tool.
Visual Language'87, Linkoping. Sweden, Aug.. 1987, pp. Human Factors in Computing Systems, Proceedings
105-117. SIGCHI'90, Seattle. WA. April, 1990, pp. 153-159.

249

To appea in Proceedings INTERCHI' 93: Human Factors in Computing Systems.Amsterdam, Holland, April 24-29, 1993.

Marquise: Creating Complete User Interfaces
by Demonstration

Brad A. Myers Richard G. McDaniel David S. Kosbie

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213
(barn, richm, koz}@cs.cmu.edu

ABSTRACT appear as you move the mouse, rather than having this as a
Marquise is a new interactive tool that allows virtually all hard-wired, unchangeable component. Another important
of the user interfaces of graphical editors to be created by capability in Marquise is demonstrating the modes of the
demonstration without programming. A "graphical interface. Although "mode-free" interfaces are often
editor" allows the user to create and manipulate graphical touted, all modem graphical interfaces are in fact highly
objects with a mouse. This is a very large class of moded. For example, in most drawing tools such as
programs and includes drawing programs like MacDraw, Macintosh MacDraw, a palette controls whether the next
graph layout editors like MacProject, visual language mouse click will select an object, insert a text string, or
editors, and many CAD/CAM programs. The primary in- draw a rectangle, circle, polygon, etc. Other modes include
novation in Marquise is to allow the designer to the current colors, line styles, and arrowhead styles for the
demonstrate the overall behavior of the interface. To im- objects that will be created. Marquise provides an intuitive,
plement this, the Marquise framework contains knowledge demonstrational method for specifying the modes that con-
about palettes for creating and specifying properties of oh- twol and ame affected by an operation.
jects. and about operations such as selecting, moving, and
deleting objects. The interactive tool uses the framework With Marquise. we have concentrated on providing com-
to allow the designer to demonstrate most of the end user's plete control of when and how the behaviors are initiated.
actions without programming, which means that Marquise The primary innovations in Marquise are: (1) the use of
can be used by non-programmers. special icons to represent the mouse positions while

demonstrating the behavior, so the designer can then
KEYWORDS: User Interface Software, User Interface demonstrate what happens at those locations, (2) sophis-
Management Systems, Interface Builders, Demonstrational ticated control over the locations where those events should
Interfaces, Garnet. take place to begin and end behaviors, (3) a "mode win-

dow" to make explicit the modes of the interface that con-
INTRODUCTION tr,, the behaviors and values, (4) the formalizauon of
One important goal of the Garnet project [61 is to allow "palettes" to control modes and object properties, and (51
user interface designers who are not programmers to design the ability to interactively specily the attributes for built-in
and implement the look and feel of user interfaces. The layout operations and objecLs.
Marquike tool is the newest addition to the Garnet environ-
ment, and it ties together all the previous tools, while sup- Marquise stands for Mostly Automated, Remarkably Quick
porting, for the first time, interactive specification of ft User Interface Software Environment. (A "marquise" is a
entire user interface, gem having the shape era short, pointed oval with many

facets.) Marquise is part of the Garnet system, which is a
In particular, Marquise allows the overall graphical ap- comprehensive user interface development environment
pearance of the interface to be drawn, and the behaviors for written in Lisp for the X window system.
object creation, selection and manipulation to be
demonstrated. RELATED WORK

Previous design tools have shown that it is possible to in-
Unlike many previous tools w'hich concentrate on widgets,
Marquise is aimed mostly at the main drawing window of
graphical editors where the user creates and manipulates 'Thc Gamct system i% ivalabhlc by Antmvrnou' til' Although Mar.
graphtcal objects with a mouse. For example, with Mar- qulsc is not Yet ready for ditsnhutiom as this paper is hcng wnitcn. you
quise you can demonstrate how the rubber banding will can get the toulkit, the Git interface hudider, and La.pdayi Send mail to

Garnet@cs . cmu . edu for nlormaiion.

Mar"uise Creating Complete User Interfaces by Demonstration - 116

teractively specify the graphical appearance and behavior
of limited parts of an application's user interface. For ex-
ample, many interface builders, such as the NeXT Interface
Builder, LJIMX for Motif, Druid [8], and Gilt [7], allow the
designer to interactively specify the placement of widgets.
Peridot (3] allows new widgets to be created interactively
without programming, and Lapidary [4] allows application-
specific graphical objects to be demonstrated. Marquise
goes beyond these tools since it supports creating, editing,
and deleting of objects at run time, and allows the overall [] E I
behavior to be defined. DEMO [1010 used the idea of U JE [E
demonstrating the end-user's actions that start a behavior C3.
(called the "stimulus") and then demonstrating the
response to that stimulus. DEMO II [11 added sophis- Figure 1:
ticated techniques for inferring constraints to control how The main Marquise windows: the basic object palette on
objects are placed or moved. Marquise uses the stimulus- the left, the main work area. and the palette for controll-
response idea, here called "train" and "show," but con- ing the color and halftones for filling-styles and line-

centrates on which high-level actions are appropriate and styles at the bottom. The designer is creating an inter-

the context of the stimulus. face with a "create palette" at the top containing two
types of nodes and two types of links. The node at the

Some previous systems have provided frameworks to help lower right of the work window is selected. The Mar-

code graphical editors. Unidraw [9] and many graph quise commands are in the menubar at the top. The

editors (e.g., (2]) provide a standard set of built-in opera- 'Constraints" menu allows graphical constraints to be
eitorasmethods, [a]) trovdeasigndar wries ode but-o overre specified. The "Behaviors" menu allows objects to be
ions as methods, and the designer writes code to override declared as p-lettes, and displays the mode and feed-
these methods for the specific application. However, none back windowi
of these other systems allow new behaviors to be defined
by demonstration.

USER INTERFACE i k t ý$ ki
The basic windows for Marquise are shown in Figure 1. (a)
There is a palette of objects that can be drawn, some
palettes for controlling the properties of those objects, and
a set of commands in a menubur. In all conventional inter-
face builders there are two modes: Build and Run, where in ,
Build mode the designer constructs the interface, and in
Run mode it is tested. Marquise adds two additional modes
to demonstrate behaviors: Train and Show. Train mode is
used to demonstrate what the end user will do, and Show

mode is used to demonstrate the system's response to that
action. A different mouse cursor for each mode insures (b) (c)
that the designer always knows what the current mode is. Figure 2:

(a) The icons that show where the mouse was pressed,
In Build mode, the static pans of the interface are drawn. moved to. released. clicked (prcssed and released in the

For example, the designer might add to the window some same place), double-clicked, and double clicked and
widgets that should always be visible. Lines could be released. (b) In Train mode. the designer pressed the

added as decorations. Many applications contain palettes mouse down and moved, and Lhe. in Show mode, drew

that show which objects can be created, or that show a dotted line as the intenm feedback. ýc) Going back to

various values for a property (like color, line-style, etc.). Train mode. the designer released the mouse button, and
in Show modc, deleted the dotted line and drew a solid

These palettes are drawn with Marquise in Build mode. In line.

Run mode, the interface can be exercised to see how it will line.

operate for the end user.
mode.

In Train mode, the designer operates the mouse and

keyboard in the same way the end user would, and then As an example, here is how the designer would
goes into Show mode to demonstrate what the system's demonstrate that when the mouse button goes down, a
response should be. While in Train mode, the end-user feedback dotted line should be drawn which follows the
behaviors are operational, but in addiction, the keystrokes mouse, and then when the button is released, the dotted line
and mouse movements are saved, In Show mode, the should be erased and a real line drawn. First, the designer
designer can create and edit objects exactly the same as in would go into Train mode, press down the mouse button.
Build mode, except that the operations are remembered so and move away from the initial press. Without releasing
they can be attached to the events demonstrated in Train the mouse button, the designer would change to Show

117- Second Garnet Compendium

If the mouse had been pressed and released in the same
0 - Creain .- A-un. W place, then a click icon would be displayed instead of the
bjes•: down, move and up icons. Double-clicking or double-

T0hoct tas, e aine i• s • an ce.. of M-2 212 xtrt clicking followed by a move are also supported. To allow
Properti: modes to be changed while mouse buttons are being held

Slot :u.io-ftle- is •down and while the mouse is at a particular place, keyboard

Plac•m•nt is =Cor "a - awe. D .M.f accelerator keys are used to change modes.

i - mMarquise generalizes from the designer's example actions
Tm object Is an •nstane, of LM-212 With prowtie: to create the user interface. Any system that tries to
PLA& s.nato-JUNome ,eint generalize will sometimes guess wrong. Various
s - Mo W fausI mechanisms have been explored in other systems to show

the user what has been guessed, so that users can verify and
UW • -g * .I correct the inferences. Older systems, such as Peridot

Te relevant models) arm: [3] and Druid [8], required the user to confirm each in-
ceto-tett.-L fta value M. ference, which can be disrupting and annoying. In Mar-

When thle mo button is 1e with quise, a feedback window (Figure 3) shows the inferred

over I "ii bet h akWnoloperation. The labels and buttons can be read as a sen-
I tence, and the buttons can be pressed to pop up a list of

AS the mouse is moved over ihCthe•__._l J.b...- other alternatives and change the values. Since Marquise
I appears to guess correctly most of the time, Marquise ap-

plies the interred property immediately, and allows the
designer to verify or change it afterwards in the feedback

Muea~ýl thitCo siitdoe h window.
The ENVIRONMENT

Create inftternal object Ln NIOMN
Marquise makes heavy use of many features of Garnet.
Garnet uses a retained object model and a prototype-
instance object system. This means that there is an object
in memory for every object on the screen, and that any
object can be used as the prototype to make a copy or
instance. Since all Garnet objects are represented the samek- way, there is a single mechanism for copying and creating

Figure 3: objects, whether they are simple rectangles or aggregates
The feedback window for behaviors. At the top is a containing many components. Therefore, Marquise can al-
pull-down menu of commands, then the name of the ways generate appropriate code to create items for run
behavior, then the objects that participate in the be- time, without having to know the types of the objects the
havior. and fimally the events and actions. Pushing on designer has drawn.
the buttons displays a popup window of the other pos-
sible choices. Changing the option at the beginning of a Implementing the behaviors that are demonstrated is quite
".satence" will change the options available for the straightforward once they have been determined because
rest of the sentence. An entire section of the window Marquise can create instances of "interactor" objects
can be selected and cut, copied, etc. [51 and Fill in the appropriate attributes. Each interactor

implements a particular kind ol behavior, such as selection,

mode. The window will now contain two icons which creation, moving, etc., and contains attributes to support
show where the mouse was pressed and to where it was most of the popular interaction styles.
moved. Now in Show mode, the designer draws a dotted
line between the icons (Figure 2-b). Marquise infers that a The object system supports constraints, which are relation-
dotted line should be created on the down press and one ships that arc declared once and maintained by the system.
end should follow the mouse as it moves. Then the desig- Constraints are used to maintain the relationships among
ner presses the mouse button somewhere on the back- the graphical objects in Marquise. Constraints can also be
ground and switches to Train mode with the mouse button used to connect application data to Marquise-generated in-
still down, so the mouse release can be demonstrated. Be- terfaces, or else application-specific call-back procedures
cause this second demonstration does not include a down- can be invoked when a behavior is completed.
press, the original down-press icon is retained. Next, in
Show mode, the designer deletes the dotted line and draws Garnet contains a number of other high-level interactive
a solid Line from the initial down press icon to the final tools, such as the Lapidary tool for creating individualbutonrelas icn Figre2-c). This entire behavior takes widgets or objects, the Gilt tool For editing dialog boxes,
button release icon (Figure s the Jade tool for automatically creating dialog boxes, and
less than 30 seconds to demonstrate, and very few new the C32 spreadsheet system for specifying complex con-
concepts or commands are necessary, since the designer straints. Because all the tools use the same data structures
already knows how to draw and delete objects in the editor.

Mamuise: Creatina Complete User Interfaces by Demonstration -118

and file forms for describing objects, Marquise does not Palette'
have to re-implement the functionality already provided by One of the important innovations in the Marquise
those tool--it can concentrate on the global behavior. The framework is the formalization of a palette, which is a list
designer can have more than one tool operating at the same of options, usually presented graphically. Each palette con-
time, and use whichever is appropriate for the current part trols a single value or mode. Since palettes are conven-
of the task. tional interaction techniques internally (i.e., they are

usually a list of buttons), their internal behavior (how the
FRAMEWORK user changes the current selection and what feedback
Maxjuise is able to construct the interface from the shows the selected objects) can be easily specified using
demonstrations because it has built-in knowledge of the Lapidary or Marquise. The innovation here is the
kinds of operations that are common in graphical editors, automatic connection of the palette to the rest of the inter-
This knowledge is part of the underlying Marquise face.
frmework tha supports the interactive front end. The
opeations include, creating an object of the type in a Marquise identifies two main classes of palettes: create
palette, selecting objects, directly manipulating the size and palettes and property palettes. A create palette contains the
shape with the mouse, specifying properties of objects different kinds of objects that can be created. For example,
(color, font, etc.) with a palette or property sheet, miscel- the create palette for MacDraw II contains a selection ar-
laneous editing operations (deleting, duplicating, etc.), and row, strings, lines, rectangles, rounded-rectangles, ovals,
application-specific commands. arcs, curves, polygons, and text fields. A create palette for

a CAD/CAM program for circuit boards might have a long
Mod"s list of different IC types, plus wires, pads, etc.
It is very common in user interfaces for different behaviors
to result from the same action, determined either by the
location of the initiating event or by the value of a global Add Ei D
mode variable. As an example of the first case, in System Modes:
MacProject II for the Macintosh, pressing the mouse button
down will start text editing (if inside a box), select a box (if The Created Object -ASAEZ- :N7_E-4'.02
at its edge), create a new box (if in the background), draw a T h. Select Object •: -L
link between two boxes (if pressed in one box and released
in another), grow a box (if pressed on a selection handle), User Modes:
or draw a link and create a box (if pressed in one box and

Marquise by demonstrating the different operations. Mar- Li Style Palette So:
quise notices what objects are underneath the demonstrated
events (including the mouse release), so it can distinguish Color Palette 3 e

the correct times to use the different behaviors. The object User Noe :E.-: L.
being used is shown in the feedback window, and the but-
tons there can be used to edit the choice, Figure 4:

The mode window showing the defined modes and their
In other cases, the selection of the behavior is determined current values. The designer can click on the check box
by the value of a global mode variable, which is set by a at the left of a row to indicate that the next action
palette or an external application program. To make these depends on the mode having the specified value.
modes explicit and visible, Marquise provides a mode Modes based on palcttes change as the palette as
window, shown in Figure 4, which lists each mode variable operated. Applications can also directly set a mode, and
and its current value. The values displayed will clhange as one of the actions resulting from a behavior might be a
the interface is operated, and the designer can directly edit mode change.
the values for user modes. When the value has a fixed list
of choices, these are available in a pull-down menu. To
make an interaction dependent on whether a mode has the A property palette contains the different values for a single
current value, it is only necessary to click on the check box property. MacDraw II has a property palette for the lilling
next to the mode name before demonstrating the behavior, style at the top of the window, and property palettes for the
When a user action causes a mode to change, this can be line style, font size, font style, etc. in pull-down menus.
demonstrated by simply editing the value in the mode win- Marquise supports palettes which arc not always visible,
dow while in Show mode. and a palette can even be a subsct of the items in a different

widget (e.g., a section of a pull-down menu). In addition,
The combination of the icons and mode window make the the list of choices can be dynamically changing, for cx-
control of the behaviors explicit and direct. In contrast, ample, if the application has commands to read new
DEMO 11 (11 uses multiple examples to determine in which libraries or to edit the palette itself.
situations the operations should occur, which we feel will
be more prone to errors. There are two important distinctions between the two types

of palcttes. First, the create palette usually enables dif-

119 - Second Garnet Compendium

ferent interaction techniques. For example, the selection show the value for the selected object.
arrow enables selt -tion, the rectangle enables dragging out
new rectangles, and the text string enables clicking to start To create a property palctte, the designer only needs to
entering tCXL A property palette is assumed to only set draw a set of objects representing the different values (for
values of properties and not to control interaction example, the line-style items of Figure 5), and declare them
techniques32 Note that a create palette can enable various to be a property paleue. Marquise then checks whether a
kinds of behaviors, such as selecting and deleting, and not single property seems to change in each element (as it does
just creating. The second difference between the two type- in Figure 5 and in most graphical property palettes), anc if
of palettes is that Marquise assumes that objects cannot so, proposes this as the property to use. Alternatively, the
change type, so that selections in the create palette cannot user can specify the name of the property and the value for
affect the selected objects. However, clicking in property each item of the palette.
palettes usually changes the value of that property for the
selected objects.

Create Palettes. To make a create palette, the designer .. /
only needs to draw the set of objects using Marquise or
Lapidary, select them, and declare them to be a create
palette using a menu command. Marquise will then add a Figure 5:
row to t•n mode window (Figure 4) showing the palette After drawing this picture, the designer would select the
and its current value. The designer would select the new lines, and declare them to be a property palette. Mar-
row in the mode window, click on each item in the palette quise would notice that the line-style changes. and
to put the system into the appropriate mode, and would create an appropriate pulctte description.
demonstrate the desired behavior.

The create palette has some additional attributes which Each primitive Garnet object describes which properties are
control common features found in graphical editors. Some relevant to it, and the designer can add additional properues
of these can be demonstrated, and the rest are specified in for applicauion-specific objects. Therefore, Marquise can
dialog boxes, automatically guess which properties are probably relevant
"* In some palettes, when the user clicks on an item, that to each type of object that is created. These guesses are

sets up a mode so that the next operation will create the reflected in the feedback and mode windows (Figures 3 and
kind of object represented by that item. This was shown 4), and if Marquise guesses wrong, then the designer can
in the example above, and is the way that MacDraw adjust the values.
works. In other cases, clicking in the palette causes the
object to be created immediately (e.g., at the current Some attributes for property palettes provided by Marquise
mouse position for a popup menu of choices, or at a are:
computed place if the objects are laid out automatically * Whether setting the property of a particular (selected)
by the system). Other times, objects are dragged off the object also changes the global default used when a new
palette. object is created.

"* After an object is created, some applications select the * If an object is selected that does not have the property
newly-created object, some leave the selection un- represented by the palette (e.g., if the palette is for the
changed, others add the new object to the selection set (if font property and a line is selected), whether the palette
objects were selected before the create), and yet others goes inactive (grcycd out) or not. When there are mul-
clear the selection. tiple objects selected, whether the palette is valid if at

"• Sometimes, after the object is created, the mode of the least one of the objects has this property, or only when all
create palette will change. For example, in MacDraw II, of the objects have this property.
after creating a rectangle, the mode changes back to * When an object is selected, whether the palette shows the
selection (the arrow). However, if you double-click on value of that object. If more than one object is selected.
the palette, the mode does not change after creation. In then the palette might show the value only if all objects
the original MacDraw, all object creation modes changed have the same value, pick the value of one of the objects
back to selection except for text strings, to show, show the global default value, or just be cleared

to show no value.
Property Palettes. Property palettes allow the user to con- a If the palette does not echo the value of the property
trol the value of properties of objects. Typically, the same when the selection changes, then the newly selected ob-
palette is used for specifying the global default value used ject might get the current value of the property (as op-
for newly-created objects, and for changing the property of posed to requiring another click in the palette after
selected objects. The same palette might also be used to changing the selection).

Positions of now objects
Once Marquise knows which object to create, there is then

2'This restrction could be lifted in the future if it hecomcs onerous, but the question of where and how to create it. There are two
it is consistent with the behavior of all cditors we have studied.

Marquise: Creating Complete User Interfaces by Demonstration - 120

possibilities: the position is computed automatically, or is line can be demonstrated in Marquise.
specified by the user with the mouse.

It is very common for the objects to be constrained in their
Automatic Layout Garnet has built-in routines for list, placement. Marquise has built-in knowledge about grid-
table, tree, and graph layout. These automatically place the ding, so this can be easily used in an application. A more
nodes, rather than requiring the user to specify a location, interesting problem is attachment. For example, an arrow
Each type of layout has a set of methods for creating and connecting the boxes in Figure 6 might always be attached
deleting nodes, and Marquise allows the designer to to the centers of the boxes. In an earlier article [41, we
demonstrate how these methods are invoked and how their discussed how Lapidary allows the arrow prototype to be
attributes are specified. Many previous systems have al- defined interactively with parameters that refer to the ob-
lowed a designer to build custom graph layout applications jeers to which it should be attached. Lapidary creates con-
by writing code, but Marquise is the first to allow the look straints that keep the arrows attached as the objects move.
of the nodes to be drawn and the editing behaviors (creat- Marquise allows the designer to interactively show how
ing, deleting, editing labels, etc.) to be demonstrated inter- those parameters are filled in based on the designer's ac-
actively. tions. For example, look back at Figure 1 where a creation

palette is being drawn. To demonstrate the arrow creation
First, the designer specifies which kind of layout is mode, the designer would select the arrow in the create
desired.3 Next, the designer draws pictures to show the palette while in Run mode. This will change the value
graphics for the nodes (and the graphics for the arcs for shown in the mode window for the create palette mode
trees and graphs). If these have complex internal structure, (Figure 4). The designer would then click on the check box
then the Lapidary tool will be useful for drawing them. next to this mode, which tells Marquise that the mode is
The built-in layout algorithms have many attributes that significant for the next operation.
control the display, and some of these can be demonstrated
(e.g., the spacing and direction). The rest are specified in a Assume that the arrow was defined so that setting the from
dialog box. and to parameters with objects would cause the line to be

attached to those objects. In Train mode, the designer
Next, the designer demonstrates the creation behavior, would press down inside a rounded-rectangle, and drag out-
Using knowledge of the type of layout in use, Marquise side. Then, in Show mode, the designer would create an
tries to determine if the new object should be placed in instance of the arrow with the shaft end inside the rounded-
some relation to a selected object, or globally with respect rectangle and the arrow end at the fti icon. Then, the
to all objects. For example, in a directed-graph editor, designer spe.ifies that the rounded-rectangle corresponds
there might be commands for "Add new child" and "Add to the from parameter, and Marquise infers that it should
new parent." MarqLtse does not try to understand the determine the parameter value based on where the mouse is
words in the command names. Instead, the designer would first depressed, and that the other end should fol' w the
go into Run mode and select a node, and then in Train mouse. Next, the designer demonstrates the mouse button-
mode the designer would select the command. Finally, in up response by deleting the feedback line and creating a
Show mode, the new object would be created with the cor- new arrow between the two nodes. These nodes are
rect relationship to the selected node. declared as the from and to parameters. In the future, we

will provide facilities for gravity so the designer could
In some cases, the new object's position will not depend on specify that while the mouse is moving, the feedback
the selection, but rather on global properties. For example, should jump to the attachment points of objects if they are
the new object might always go at the end of a list. In this close enough.
case, the designer would make sure that no objects are
selected before demonstrating the position of the new ob- Selection
ject, and Marquise would try to determine the appropriate One of the most important operations in a graphical editor
place for the object. Alternatively, the position might is selecting objects. Typically, the selected object will be
depend on some global mode, so the appropriate row of the shown by changing its appearance (e.g.. to reverse video)
mode window would be selected before the demonstration. or by showing "selection handles" around it (Figure 6).
Usually, the position will be obvious (e.g., first or last), but Marquise supports virtually any graphical response to show
if Marquise cannot guess it, then currently the designer will the selection. The designer simply draws an example of the
have to write a Lisp function to compute the position, pos- selection graphics (or if the object itself changes, the desig-
sibly based on values in the mode window. ner draws the object first in its normal and men in its

selected state). If the standard Ga-nct selection widget is
User Layout. Most graphical editors, however, require the desired, then it is only necessary to go into Show mode and
user to explicitly specify the position of new objects. The select an object. A special line ol the mode window shows
example of Figure 2 shows how the simple case of a new which objects are selected, and this value can be edited to

show whether the interaction being demonstrated adds to
the selection set, removes from it, clears it, etc. This

NMarquise cafnnot infer a new layout algorithm. For example, if a new provides a uniform, intuitive mechanism for specifying al-

kind of graph layout is required, the designer has to program it i Lisp, but most any selection behavior. The designer can also specify

it can then be used by Marquise-generated programs, whether a different form of feedback is used when there are

121 - Second Garnet Compendium

Because Garnet uses a retained object model, there is a
Box Istandard format for all Garnet ubjects. Therefore, common

editing commands such as bringing objects to the top (un-
covered), sending to the bottom, cutting, copying, pasting,
deleting (clear), duplicating, and printing in PostScript. are

"Box 2 all provided. T` designer simply demonstrates what ac-
----.- tion causes it to occur, and then which operation is desired

a Note that unlike other frameworks that provide messages
that must be overridden by each application, the code

Box 3 provided by Marquise for these operations can often be
used without change.

Semantic Actions
S4 Naturally, many of the commands in a graphical editor will

invoke application-specific functions (sometimes called
Box• "semartic actions"). Since these may involve arbitary

computation, it is impossible for Marquise to infer these
from a demonstration. However, techniques like Lhose
previously reported for Gilt [71 are used to allow the ap-

Figure 6: plication procedures to be independent of the way they are
The arrows are constrained to be in the centers of the invoked (from a button, menu, double-click, etc.) and
boxes. Box 3 ha, "selection handles" around it, which somewhat independent of the graphics. However, most
show that it is _,lected, and the user can click on white functions will want to walk through the graphical objects
handles to move it or black handles to grow it. The computing values, so they will clearly have to look at the
formula that computes the labels was hand-coded using graphical objects in the window.
C32.

If the result of the function is a change to the graphic ap-

multiple selections (as in Macintosh PowerPoint and pearance of nodes, then this can be specified demonstra-
MacProject. H). tionally. For example, a "critical-path" command in a

graph editor might want all the nodes on the critical path to
Mvvlng and Growing Objects turn red, The designer can bring "p a property sheet o,, the

Demonsting what commands cause objects to be moved nodes, add an on-critical-path property,4 and
andgrowntn workshsimila l tomm ds semonsatig how they m ed demonstrate that the nodes are black when it is NIL and redand grown works similarly to demonstrating how they moe when it is T. Then, the critical-path function weald only be
created: fusrt, the designer demonstrates in Train mode responsible for setting the on-critical-path value inwhat user action causes the interaction to start, and then in each node. This makes the application function more mndc-

Show mode, moves or grows the appropriate object. Since pendent of the graphical response to its actions.
the standard editing actions work in Show mode, the desig-
ner would just use the Marquise move-grow selection Semantic feedback can often be provided in the same way.
handles to demonstrate the behavior. Of course, if other For example, Marquise supports highlighting of only those
objects are attached to the moved object with constraints, objects that an object is being dragged can legally be
they will also move. dropped into, as in the Macintosh Finder. Here, a function

One complication is that often the object that the mouse i could be called to set a particular property of each object to
over omplicatioisatoften the object that shouied. Fore s T or NIL. Then, the designer would dcmonstr'.c the ap-over is not the object that should be m odified . For ex- p o ra e c l r c a g h n t e n d s o e n o~ cpropriate color change when the node is over an obiect
ample, with selection handles, the user clicks on a handle, which has the value T (or that property.
but wants to grow the object underneath. Marquise knows
about this special case, and if the object the designer moves Similarly, if the application wants to control which mod-, is
is attached by a constraint to the object clicked on, then this in effect, it can simply change the value of one of the mode
is reflected in the generated behavior, variables, and the designer can demonstrate mntcracuvclv

Other Properties of Objects what this controls.

Many properties of objects are controlled by palettes, but EDITING
some are not. In some graphical editors, a menu command An important aspect of an interactive builder is how to edit
or double-clicking on an object opens a property sheet or the interfaces after they have been created. It is easy tc. edit
dialog box with other properties. Marquise provides hooks the graphics, since they can be directly manipulated in
to pop up a property sheet or a dialog box created automati- Build mode. For the behaviors, the feedback window oi
cally by Jade or interactively using Gilt. Of course, the
designer can specify which fields are presented.

Miscellaneous Editing Commands 41'he Garnet object iyvtcm allowý projvrtic to be addc-d to objccts at
4ny Urne.

Marqise CreaZing Complete User Interfaces by Demonstration - 122

Figure 3 shows the properties. When in Train mode, the those of the authors and should not be interpreted as
feedback window continually shows the name and representing the official pohies, e!ither expressed or im-
properties of the behaviors being executed, so the designer plied, of the U.S. Government.
can determine which behaviors are associated with which
events. There are also commands to list all the behaviors, REFERENCES
or all those affecting a particular object. 1. Gene L. Fisher, Dale E. Busse, and David A Wotber.

CONCLUSION Adding Rule-Based Reasoning to a Demonstrational Inter-

One of the important questiows for an interactive tool is face Builder. ACM SIGGRAPH Symposium on User In-
what is the range of interfaces that it can cream. Unfor- terface Software and Technology, Proceedings UIST'92,
rniatly, this is very difficult to quantify, except by ex- Monterey, CA, Nov.. 1992, pp, 89-97,

ample. Using the Lapidary, Gilt and Marquise tools in 2. Anthony Karrer and Walt Scacchi. Requirements for an
Garnet, it is possible without programming to create com- Extensible Object-Oriented Tree/Graph EdAto. ACM SIG-
plete user interfaces like those in Macintosh MacDraw, GRAPH Symposium on User Interface Software and Tech-
MacDraw II. PowerPoint. and MacProject 11 (which ,re nology. Proceedings UIST'90, Snowbird, Utah, Oct., 1990.
surprisingly different), as well as applications with various pp. 84-91
kinds of automatic layout for nodes. Later, we hope to
expand the range of Marquise to handle gestural interfaces 3. Brad A. Myers. Creating User Interfaces by
(the Garnet toolkit already supports gesture recognition), Demonstration. Academic Press, Boston, 1988.
and those with 3-D graphics. We also plan to add support 4. Brad A. Myers. Brud Vanter Zanden. and Roger
for animations, which will probably make possible the B. Bad AnMers, Crad Gra nterani Roger
demonstration of various visualizations and video games. B Dannenberg. Creamo ng Graphical Interacve Application
Another addition will be to support defining constraints Objects by Demonstrauon. ACM SIGGRAPH Symposium
among objects directly in Marquise, probably using on User Interface Software and Technology, Proceedings
demonstrational techniques similar to Peridot (31 or Druid UIST'89, Williamsburg, VA, Nov., 1989. pp. 95-104
(8]. 5. Brad A. Myers. Encapsulaung Interactive Behaviors.

Human Factors in Computing Systems, ProceedingsMarquise is still unader development When it is more SIGCHI'89, Austin, TX, April, 1989, pp. 319-324
robust, we will perform user-testing to see if the
demonstrations and feedback are understandable to both 6. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
non-programmers and programmers. After that, we will Brad Vander Zanden, David S. Kosbie, Edward Pervin,
release it fir general use as part of the Garnet system. All Andrew Mickish, and Philippe Marchal. "Garnet: Com-
this will help show what kinds of behaviors it can capture, prehensive Support for Graphical. Highly-Interactive User
and we will continually work to expand the range. Interfaces". IEEE Computer 23, 11 (Nov. 1990), 71-85.

We believe that interactive, demonstrational creation of 7. Brad A. Myers. Separating Application Code from
user interfaces is easier, faster, and more fun than program- Toolkits: Eliminating the Spaghctt of Call-Backs. ACM
ming. Many interactive builders have already shown that SIGGRAPH Symposium on User Interface Software and
dialog boxes and forms can be created interactively. Mar- Technology, Proceedings UIST'91. Hilton Head. SC, Nov,
quise shows that direct manipulation techniques can be 1991, pp. 211-220.
used to generate the user interfaces of a much wider class 8. Gurminder Singh. Chun Hong Kok. and Tcng Ye Ngan
of graphical applications as well. Druid: A System for Demonstrational Rapid User Interface
ACKNOWLEDGEMENTS Development. ACM SIGGRAPH Symposium on User In-

terfacc Software and Technology, Proceedings UIST*90,
For help with this paper, we would like to thank Dario Snowbird, Utah, Oct., 1990. pp. 167-177,
Giuse, Brad Vander Zanden, Andrew Werth, and Bernita 9. John M. Vlissides and Mark A. Linton. Unidraw: A
Myers. Framework for Building Domain-Spccific Editors. ACM

SIGGRAPH Symposium on User Interface Software and
This research was sponsored by the Avionics Laboratory Technology, Proceedings UIST'89. Williamsburg. VA.
Wright Research and Development Center, Aeronautical Nov., 1989. pp. 158-167.
Systems Division (AFSC), U. S. Air Force, Wright-
Patterson AFB, OH 45433-6543 under Contract 10. David Wolber and Gene Fisher. A Demonstrational
F33615-90-C-1465, ARPA Order No. 7597. Technique for Developing Interlaces with Dynamically

Created Objects. ACM SIGGRAPH Symposium on User
The views and conclusions contained in this document are Interface Software and Technology, Proceedings UIST'9 1,

Hilton Head, SC, Nov., 1991, pp. 221-230.

Screen Shots from Selected Garnet Applications

Led by
Brad A. Myers

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

As of the winter of 1993, Garnet has been used by over 40 projects from all over the world. The following pages
show pictures of a few of those applications. None of the applications shown in the pictures were developed by the
Garnet group--hey are all thW work of other projects, and the pictures and text were provided by the developers.
Most were generated by Garnet's code that produces Postscript files directly from the graphics on the screen. If you
are using Garnet and have interesting screen shots, please send them along with a description of your project, to
garnet@cs .cmu. edu.

Many of these pictures were originally in color. If you have a color printer and would like to see the original
pictures, they can be retrieved by anonymous FTP from a.gp.cs.cmu.edu in directory
/usr/garnet/garnet/doc/usegarnet/.

Pictures from Project-: Using Garnet . 124

Companies 22. Carnegie Mellon University. CS
1. Corporation For Open Systems PURSUIT

Automated Protocol Analysis/Reference Tool (APART) Francesmary Modugno
Frank J. Wroblewski 23. Carnegie Mellon University. ERDC

2. Design Research Institute (Comell & Xerox) LOOS
(various) Ulrich Flemming or Robert Coyne
Jim Davis 24. Carnegie Mellon University, Math

3. ieutches Forschugszenumu fuer Kuenaliche Intelligenz GmbH Educational Theorem Proving System

COSMA Peter Aulrews
Stclilum P. Spakutlan 25. Cartnegic Mclhm Unmvcrsity. P'syc.h

4. GE Research and Development Center Soar Graphics Interface
Metallurgical Expert Systems for Manufacturing Frank Ritter
K. J. Meltsner 26. Carnegie Mellon University, Robotics

5. GE Research and Development Center MICRO-BOSS
SKETCHER Norman Sadeh
K. 1. Meltsner 27. Carnegie Mellon University. Robotics

6. Hughes Al Center SAGE Data 'v .;ualization
NLP Project Steve Roth
Seth Goldman or Charles Dolan 28. MIT. Dept. of Brain and Cognitive Sciences

7. Lawrence Livermore National Lab SURF-HIPPO Neuron Simulator
PLANET (Pump Layout ANd Evaluation Tool) Lyle 1. Borg-Graham
Tom Canales 29. MIT. LCS. Computation Structures Group

8. Microelectronics and Computer Technology Corp. (MCC) Debugging tools for the Id Language
Scan: Intelligent Text Retrieval Steve Glim and R. Paul Johnson
Elaine Rich 30. State University of New York at Buffalo, CS

9. The MITRE Corporation Air Battle Simulation
AIMI (An Intelligent Multimedia Interface) Henry Hexmoor
John D. Burger 31. State University of New York at Buffalo. CS

10. National Science Canter Foundation SNePS Graphical Ul
Learning Logi John S. Lewocz
Lawrence Froil 32. Tulane University, CS

11. StatSci Natural Language Processing
GRAPHICAL-BELIEF Robert Goldman
Russell Almond 33. Tulane University, CS

12. The MITRE Corporation THESEUS
AIMI (An Intelligent Multimedia Interface) Raymond Lang
John D. Burger 34. University College London

13. Transarc Corporation The Cognitive Browser
Lisp GUI for Encina Gordon Joly
Mark Sheman 35. University of Leeds

14. U S WEST Advanced Technologies Graphical Multi-User Domain Designer
KBNL natural language system Roderick 1. Williams
Randall Sparks 36. University of Leeds

15. USC/ISI CLARE
Humanoid Nikos Drakos
Pedro Szekely 37. University of Leeds

16. USC/ISI ADVISOR
SHELTER knowledge-based development environment Andrew 1. Cole
Pedro Szekely 38. University of Leeds

PORSCHE
Universities Colin Tattersall

17. Carnegie Mellon University, CS 39. University of Saskatchewan
Miro DISCUS (DIstriboted Cunmputing at di U of S)
J. D. Tygar and J. M. Wing Beth Proisko (User Interface only)

18. Carnegie Mellon University, CS 40. University of Southern California

Learning Calendar System Dynamic Aggregation in Qtialitative Simulation
Conrad Poelman Nicolas Roqutte

19. Carnegie Mellon University, CS 41. University of Washington, CS
Interactive Fiction Editor Multi-Gamet
Merrick Furst Michael Sannella

20. Carnegie Mellon University, CS 42. University of Washington. CS
Redstone Electronic Encyclopedia Exploratorium
Jeff Schlimmer Mike Salisbury

21. Carnegie Mellon University, CS
Architectural Design
Mikako Harada

A list of some of the projects that have used or are using the Garnct user intcrfacc dcvclopmcnt cnvtronment, as of
February, 1993. If you arc usiogg Girnet and your project is not here, please send us mat V

125- Second Garnet Compendium

Object:

Control vantal

MSDMC40 f., CeL

on i OF- l=

W7 -0 - 0o-

IE7 .

Nikos Drakos
Computer Based Learning Unit, University of Leeds, UK.
CLARE
nikos@cbl leeds. ac. uk

A collaborative project on an environment for the specification, testing, maintenance and automatic generauon of
application software. The context is batch process control in Chemical Engineering although it is envisaged that the
applicability of the environment will be more general. A 'domain expert' will be able to specify knowledge about
plant subsystems, plant configurations, and the allowable generic operations and -onstraints on each plant
subsystem. An 'application engineer' will then use the system to 'glue' together predefined operations in order to
make specific products. The system will then generate process control code for particular target hardware. Garnet is
being used to capture and visualise plant and process information through schematics, proccss diagrams. interactivc
simulations and simple animations.

Nikos Drakos. "Object Orientauon and Visual Programming-, in Mamdouh Ibrahim. editor. OOPSLA '2 Wtlrk'shop ,n

Object-Oriented Programming Languages: The Next Generaxion, Vancouver. B.C. Canada, October 1 X
1992. Extended Abstract. pp. 85-93.

MUagnify. Mesh
Enlarea

FýIt Wndow O

:::::........

Kenneth Meltsner
General Electric Company, Corporate Research and Development
Metallurgical Expert System
rneltsner@crd.ge.com

A mesh created using a virtual aggregate for the polygons and anothecr virtual aggregate for the square knobs. For
the polygons, the virtual aggregate is passed a prototype for a polygon, and an array containing the list of potnts; and
the color for each polygon. The virtual aggregate then pretends to allocate an object for each element of the array.
but actually just draws the prototype object repeatedly.

Kentneth L. Meltsner. "A Metallurgical Expert System for Interpreting FEA.- Journal (4J Vetals. Oct. 1091, vol. -43. no. 10, pp.

127- Second Garnet Compendium

re --w -t I- I -- -

Pedro Szekel

usc/IS'M
Hwnanoad:

Per zekely~ii.d

Humanoid is a user interface design environment. Thlc goal of Humanoid is to) allow intcrlaLC dcsigncrs to
incrementally construct interfaces by composing building blocks (ganict gadlgets and intcractors). Humanoid allows
dcsigners to specify the conditions when gadgcts and interactors arc appropriatc for displaying/interacting with
information. Given and application data structure, Humanoid constructs, at nin-tiimc, a display appropriate for
interacting with the given data structure. Humanoid keeps track of how Lthe display depcends on the input data, So
that if the data changes at run-time, Humanoid can automatically update/reconstruct the display.

Pedro Szekely. Ping Luo, and Robert Neches. "Facilitating the Exploration of Interface Design Alternatives: The IIUMANOII)
Model of Interface Design." Proceedings SICCII' 92. liwnan Facturs in CopnpuwiiR Svviemm Mintertcv,
CA. May. 1992. pp,. 9'7-5 15.

Picures ftrm Proiects Using Garnet -128

4.Numer Of ROW.S Leave a TraI.

Nurraer of C013 Pause at :Tholce pant

25 ioom 1 i+dtr1 Turn Toward EX

25 i~o~i ~e~qntOePC First Stamm.

wall Thickness
Breadth First Searc-1

Raymoow Loans

Ta U et, m er ScienBe Deartet nSearch

Grap CEi hRomSac

QUIHESEUS u r

RIO, C3

an@rx6.Pan edu *6. C1

These are images of windows from the THESEUS application used by the Tulanc University Computer Science
Department on guided tours of the department given to visiting high school seniors and other interested paries.
THESEUS is intended to be used as part of a presentation on what the study of computcr science cntails. It does this
by showing graphically the progress and results of common search methods applied to the problcm of finding the
exit of a randomly created maze. THESEUS was developed in CMU Common Lisp version 16d and the Garnet
X-Windows toolkit version 2.01.
R. Raymond Lang, THESEUS: Using Maze Search to Inroduce Campier Science. Techncal Report ** Computer Science

Department. Tulane University. ****, 1992.

129 - Second Garnet Compendium

ft~ film Ae Ta AvwlaL*L CANM4 C4 p~tsc

~ _____________

WI~~arhtc C19d (Vi Ma :IM um) 'r

.aii 12 (3 0alaa C@ci. Q
'24 01, w tata. cawdaaC Cllm~1

gnt (me) 2.ACiAq -"1i 0 Tactical. wither..)
UnWit 4 (1c) RatartIa slawatlU 0 C 4e

r@ m tasm U14e~ baobA AWo 1413

.umAb.9 uWA Laduti shops

"o Wt it,= ut I (OM at 14- 15,,

Loationm laucat AIwemG

a s~ce trams --at 24 (M3) at 14

Lacclu Shackletm P1a6". class b? O~vzw. ,,.

ft~ect from ;sit 19(in) at 1415S
Tactic uar=hq COCdm. Jt,21(vt)
Locatio ack.tca~ PLacs. Ci.. b t"e b"41414" - ~
00100tcaBTSr wOCCAzL. sxcttl" daM. i..MPAr&tcanq. Owlt 12(3~ S w

"iaet five Zat 2.2 (a) at 14 15V le
Tactlc *ar&±aq cardsa.

14"94Mt 1M4* I

it~are asi Suatt 7(a Lat 1. ..

TMaCti POLUCra tsaa-

Roderick J. Williams
The University of Leeds, Leeds, LS2 9iT, UK.
Cactus
rodw@cbl .leeds. ac .uk

A system has been developed to train senior police officers to manage public order incidlents. suich is marches. The
system enables pre-demonstration planning, tie management of (simnulated) event~s requiring incta- and cofl(ifLZCOcv-
planning, and post-evcnt debrief'ing. The training incidentls arc generated by interaction-, between autonomous.
agents, and take place in a simulated world derived from digital map data. In addition to 1hc train~nig environment
there are facilities to graphical specify thc agent,, behaviours.
Hantley, R.I.. RavensCroft. A. and Williams, I.J. "Cactus: Command and Controll Training Using Knowiccdigchised

Simulations." Jnierochuie Learpung lniernational, Vol. 8. no. 2. 1992. pp, 127- 136.

Pictu• frm Proiects Using Garnet - 130

222211

22121 2

2) &

Lyle J. Borg-Graham
MIT Dept. of Brain and Cognitive Sciences
Swrf.Hippo
lyle@ai .mi.t. edu

"The SURF-HIPPO Neuron Simulator is a circuit simulation package for investigating morphomeutically and
biophysically detailed models of single neurons and small networks of neurons. SURF-HIPPO allows ready
construction of multiple cells from various file formats, which can describe complicated dcndritic trees in 3-space
with distributed non-linearities and synaptic contacts between cells. Cell geomcries may also be traced from the
histology directly on the screen, using the mouse. An extensive user interlace is provided, including menus. 3D
graphics of dendritic trees, and data plotting. Data files may also be saved for analysis with external tools. A
research version of SURF-HIPPO (available by anonymous ftp from ftp.ai.mit.edu [pub/surf-hippol) is written in
LISP, and is configured to run using the public domain CMU Common Lisp and Garnet packages. Our version is
compiled for SPARC workstations, and should be easily ported to other UNIX machines running X. LISP is a useful
simulator language because it has the benefits of a powerful interpreted script language, but it may also be compled.
Thus it is convenient to integrate custom code into SURF-HIPPO. The simulator may also be used with a minimum
of programming expertise, if desired.

Borg-Graham, L. and Grzywacz. N. M. "A Model of the Direction Selectivity Circuit in Retina: Transformations by Neurons
Singly and in Concert," in Single Neuron Computaaton. edited by T. McKcnna, J. Davis, and S. F. Zornetzer.
Academic Press. 1992.

13l - Second Garnet Compendium

aT f

'i? i? >i ? ? ii, ::i :,,• , i:.-.......

Rodeick J. Williams

The University of Leeds, Leeds, LS2 9JT, UK.
GMD (Graphical Mud (Muti- User Domain) Designer)
rodw@cbl. leeds, ac. uk

This application is aimed at supporting the creation of text-based multi-user domains. Current techniques use
text-based tools to create these environments, but these tools have very little computer support so complexity and
consistency are sacrificed. Our new application supports the graphical creation of MUD areas and enforces
topological constraints together with hierarchical grouping of features. The graphical tool can be used tn a number
of modes which allow the information to be filtered, zoomed and viewed in 2.5 D. Areas created can be printed and
additionally they can be saved as native code that can be executed.

Pict•res ftrom Projects Using Garnet - 132

• e~0

0 00

0 '0

Carnegie Mellon University, Robotics Institute

SAGE
roth@isll, ri. cmu. edu

The SAGE project is developing systems which automate the process of designing presentations of information. An
automatic presentation system is an intelligent interface component which receives information from a user or
application program and designs a combination of graphics and text that effectively conveys it. It's purpose is to
assume as much responsibility for designing displays as required by a user, from layout and color decisions to

broader decisions about the types of charts, tables and networks that can be composed within a display. The SAGE
project is developing an interactive data exploration environment whicn contains automatic display design
capabilities integrated with data navigation, manipulation and modification tools. These tools are being used to
explore large amounts of diverse data from marketing, logistical, real estate, census and other databases.

Roth, S,F. & Mattis, L.A. "'Data Characterization for Intelligent Graphics Presentation", In C11i'90: Proceedings of the
ACMISIGCHi Confrence on Computer fluman Interaction. Seattle. April. 1990. pages 193 -200.

133- Second Garnet Compendium

x=y

SThisis asampl noeUP

Modelaim:. M .•

'Th* o *m a o• fd View

Hierarchy

File

ave

Mike Salisbury
University of Washington, Department of Computer Science
Electronic Encyclopedia Exploratoriwn
salisbur@cs .washington. edu

The Electronic Encyclopedia Exploratorium is an electronic how-things-work book. It allows the user to learn about
devices by experimenting with the components of those devices in a lab simulation setting. A causal model
simulator lies beneath the user interface which simulates the current device and can provide causal explanations of
the results of that simulation. Other high-level tools are planned for future enhancement.

F. G. Amador, D. Berman, A. Boming. T. DeRose. A. Finkelstein, D. Neville. Norge, D. Notkin. D. Salcsin. M. Salisbury,
J. Sherman. Y. Sun, D. S. Weld, and G. Winkenbach. Electronic "How Things Work" Ar•tcles: A
Preliminary Report. University of Washington, Department of Computer Science and Engineering Technical

Report 92-04-08. June, 1992.

Picture from Projects Usifif Garnet -134

tSC-TATOb8-fOR-l

)M-NXTROD-Or-CLICK-ol - ITRIC

-vTwOO-rof-cEANG cn1RR1M-wI2~ov
NAC-.NS2NOD-O7-.OOU8L8-CLZCK-OI- ITKN

Frank L Ritter
Department of Psychology, U. of Nottingham
Thi Developmental Soar Interfiace
Rittert~psyc.nott .ac.uk

The Developmental Soar Interface provides a graphical and textual interface to observe and modiiy models
(programs) for Soar, an Al programming language that also realizes a unified theory of cognition. Garnet is used to
graphically represent Soar's goal stack and internal state, and to help users modify and observe structures in Soar.
Ritter, F. E. (1993) TEPA: A mnethodology and software environmtent for testing process mnodels' sequensial predictions with

protocols, PhD thesis, Deparunent of Psychology. Carnegie-Mellon University, Reprinted as techreport
CMU-CS-93-l0l. Carnegie-Mellon University.

135- Second Garnet Compendium

1 a--

••! • i~t !ii ••!"", .____ _ _ __l_

Sa

~~~~~~~~~. .. . ......: : . :> •: : ., :• • ; . .

Stephen P. $packman

Projekt DISCO
Deutches Porschungszentrum flier Kuenstliche Intelligenz GmbH
COSMA, the CoOperative Scheduling Management Agent
spacikman@dfki.uni-sb.de or stephen@acm. org

The calendar window shows the dark bar of the past sweeping, one pixel each half hour of the day and night, across
a horizontal line [not visible in this Postscript image] summarising by its width and height the user's working hours
and appointments, tentative and firm. The marginal time tags can be dragged up and down, and it will eventually be
possible to type over the top of them to jump to a given uime. The datebook window presents an expanded view of
time as an infinite tape from which appointment forms can be popped up by pointing or by sweeping out free areas.
Most importantly, when arrangements involve several people the system communicates with its peers and with
meeting participants by reading and writing email in German; the displays are updated in real time.

The fields of the appointment form are semi-structured: they can be filled in with the help of menus - such as that
visible on the lower window - that drop down from the small icons on the right: numeric. 'late and time values
within them can be incremented and decremented directly with mouse buttons; and experienced users can type
structured values straight in. Unconstrained German text (the graphic interface will soon be English/French/German
trilingual, but the natural language parser and generator speak only German) can also be entered. It is routed to the
natural language system for analysis; planned improvements to the pragmatics module will allow you to give up on
the structured form completely and type informal questions and instructions into the notes field. as you might for a
human secretary who had stepped out of the room.
The work underlying this picture was supported by a research grant, FKZ ITW
9002 0. from the German Burdesministerium fuer Forschung und
Technologie to the DFKI project DISCO.

Elizabeth A. Hinkelman and Stephen P. Spackman. "Abductive Speech Act Recognition. Corporate At-cnts and Lhe COSMA
System," in Abduction. Beliefs and Context: Proceedings of the second ESPrfl PLUS workshop Ln
compotattonalpragmttics. W. J. Black and G. Sabah andT. J. Wachtel, eds, Academic Press. 1992.


